Publications by authors named "Takayo Ohto-Nakanishi"

Aim: Autism spectrum disorder (ASD) is associated with abnormal lipid metabolism, such as a high total ratio of omega-6 to omega-3 in polyunsaturated fatty acids (PUFAs). PUFAs are metabolized to epoxy fatty acids by cytochrome P450 (CYP); then, dihydroxy fatty acid is produced by soluble epoxide hydrolase. This study examined the association between PUFA metabolites in the cord blood and ASD symptoms and adaptive functioning in children.

View Article and Find Full Text PDF

Background: Low-birth-weight infants exhibit a high risk for postnatal morbidity. Cytochrome P450 (CYP) and epoxide hydrolase (EH) are involved in the metabolism of factors responsible for low-birth-weight in infants. Both CYPs and EHs have high substrate specificity and are involved in polyunsaturated fatty acid (PUFA) metabolism.

View Article and Find Full Text PDF

Aroma is an essential factor for meat quality. The meat of Japanese Black cattle exhibits fine marbling and a rich and sweet aroma with a characteristic lactone composition. The mechanism of lactone formation associated with beef aroma has not been elucidated.

View Article and Find Full Text PDF

The role of lipid metabolism in human pluripotent stem cells (hPSCs) is poorly understood. We have used large-scale targeted proteomics to demonstrate that undifferentiated hPSCs express different fatty acid (FA) biosynthesis-related enzymes, including ATP citrate lyase and FA synthase (FASN), than those expressed in hPSC-derived cardiomyocytes (hPSC-CMs). Detailed lipid profiling revealed that inhibition of FASN resulted in significant reduction of sphingolipids and phosphatidylcholine (PC); moreover, we found that PC was the key metabolite for cell survival in hPSCs.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) from blood vessel rupture results in parenchymal hematoma formation and neuroinflammation, ultimately leading to neurodegeneration. Several lines of evidence suggest that the severity of ICH-induced neural damage is exacerbated by infiltration of T-cells, monocytes, and especially neutrophils into the hematoma. Neutrophil migration is regulated by chemokines, formyl peptides, and leukotriene B (LTB), a metabolite of arachidonic acid.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a potent lipid mediator with various biological functions mediated through six G protein-coupled receptors (GPCRs), LPA1-6. Previous studies have demonstrated that LPA-Gα12/Gα13 signaling plays an important role in embryonic vascular development. However, the responsible LPA receptors and underlying mechanisms are poorly understood.

View Article and Find Full Text PDF

Background: The fatty acid (FA) composition of membrane phospholipid reflects at least in part dietary fat composition. Saturated FA (SFA) suppress Sirt1 activity, while monounsaturated FA (MUFA) counteract this effect.

Objective: We explored a role of Sirt1 in homeostatic control of the fatty acid composition of membrane phospholipid in the presence of SFA overload.

View Article and Find Full Text PDF

Current models of cell-intrinsic immunity to RNA viruses centre on virus-triggered inducible antiviral responses initiated by RIG-I-like receptors or Toll-like receptors that sense pathogen-associated molecular patterns, and signal downstream through interferon regulatory factors (IRFs), transcription factors that induce synthesis of type I and type III interferons. RNA viruses have evolved sophisticated strategies to disrupt these signalling pathways and evade elimination by cells, attesting to their importance. Less attention has been paid to how IRFs maintain basal levels of protection against viruses.

View Article and Find Full Text PDF

White adipose tissue (WAT) can dynamically expand and remodel through adipocyte hypertrophy and hyperplasia. The relative contribution of these 2 mechanisms to WAT expansion is a critical determinant of WAT function and dysfunction in obesity. However, little is known about the signaling systems that determine the mechanisms of WAT expansion.

View Article and Find Full Text PDF

DDHD2/KIAA0725p is a mammalian intracellular phospholipase A that exhibits phospholipase and lipase activities. Mutation of the DDHD2 gene causes hereditary spastic paraplegia (SPG54), an inherited neurological disorder characterized by lower limb spasticity and weakness. Although previous studies demonstrated lipid droplet accumulation in the brains of SPG54 patients and DDHD2 knockout mice, the cause of SPG54 remains elusive.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a pleiotropic lipid mediator that acts through G protein-coupled receptors (LPA1-6). Although several biological roles of LPA4 are becoming apparent, its role in hematopoiesis has remained unknown. Here, we show a novel regulatory role for LPA4 in hematopoiesis.

View Article and Find Full Text PDF

Angiotensin-converting enzyme (ACE) 2 is a homolog to the carboxypeptidase ACE, which generates angiotensin II, the main active peptide of renin-angiotensin system (RAS). After the cloning of ACE2 in 2000, three major ACE2 functions have been described so far. First ACE2 has emerged as a potent negative regulator of the RAS counterbalancing the multiple functions of ACE.

View Article and Find Full Text PDF

Angiotensin-converting enzyme 2 (ACE2), a first homolog of ACE, regulates the renin-angiotensin system by counterbalancing ACE activity. Accumulating evidence in recent years has demonstrated a physiological and pathological role of ACE2 in the cardiovascular, renal and respiratory systems. For instance, in the acute respiratory distress syndrome (ARDS), ACE, AngII, and AT1R promote the disease pathogenesis, whereas ACE2 and the AT2R protect from ARDS.

View Article and Find Full Text PDF