Bioengineering (Basel)
April 2022
Cyanobacteria are a large group of prokaryotic microalgae that are able to grow photo-autotrophically by utilizing sunlight and by assimilating carbon dioxide to build new biomass. One of the most interesting among many cyanobacteria cell components is the storage biopolymer polyhydroxybutyrate (PHB), a member of the group of polyhydroxyalkanoates (PHA). Cyanobacteria occur in almost all habitats, ranging from freshwater to saltwater, freely drifting or adhered to solid surfaces or growing in the porewater of soil, they appear in meltwater of glaciers as well as in hot springs and can handle even high salinities and nutrient imbalances.
View Article and Find Full Text PDFNat Struct Mol Biol
February 2022
Nuclear Argonaute proteins, guided by small RNAs, mediate sequence-specific heterochromatin formation. The molecular principles that link Argonaute-small RNA complexes to cellular heterochromatin effectors on binding to nascent target RNAs are poorly understood. Here, we explain the mechanism by which the PIWI-interacting RNA (piRNA) pathway connects to the heterochromatin machinery in Drosophila.
View Article and Find Full Text PDFArgonaute proteins of the PIWI clade complexed with PIWI-interacting RNAs (piRNAs) protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2020
Polyhydroxyalkanoates (PHA), polyesters accumulated by numerous prokaryotes in the form of intracellular granules, have been for decades considered being predominantly storage molecules. However, numerous recent discoveries revealed and emphasized their complex biological role for microbial cells. Most of all, it was repeatedly reported and confirmed that the presence of PHA granules in prokaryotic cells enhances stress resistance and robustness of microbes against various environmental stress factors such as high or low temperature, freezing, oxidative, and osmotic pressure.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are inevitably a key biopolymer that has the potential to replace the conventional petrochemical based plastics that pose jeopardy to the environment globally. Even then the reach of PHA in the common market is so restricted. The economy of PHA is such that, even after several attempts the overall production cost seems to be high and this very factor surpasses PHAs usage when compared to the conventional polymers.
View Article and Find Full Text PDFPIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline.
View Article and Find Full Text PDFTurbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution.
View Article and Find Full Text PDFCyanobacteria, as photoautotrophic organisms, provide the opportunity to convert CO2 to biomass with light as the sole energy source. Like many other prokaryotes, especially under nutrient deprivation, most cyanobacteria are able to produce polyhydroxyalkanoates (PHAs) as intracellular energy and carbon storage compounds. In contrast to heterotrophic PHA producers, photoautotrophic cyanobacteria do not consume sugars and, therefore, do not depend on agricultural crops, which makes them a green alternative production system.
View Article and Find Full Text PDFInt J Biol Macromol
September 2017
The current commercial production of polyhydroxyalkanoates (PHA) is based on heterotrophic bacteria, using organic carbon sources from crops. To avoid the competition with food and feed production, cyanobacteria, metabolising PHA from carbon dioxide can be used. This research focuses on the investigation of the thermal and rheological properties of PHA polymers accumulated by Synechocystis salina, which had been cultivated in digestate supernatant and a mineral medium.
View Article and Find Full Text PDFA polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf.
View Article and Find Full Text PDFThe repression of transposable elements in eukaryotes often involves their transcriptional silencing via targeted chromatin modifications. In animal gonads, nuclear Argonaute proteins of the PIWI clade complexed with small guide RNAs (piRNAs) serve as sequence specificity determinants in this process. How binding of nuclear PIWI-piRNA complexes to nascent transcripts orchestrates heterochromatin formation and transcriptional silencing is unknown.
View Article and Find Full Text PDFThe piRNA (PIWI-interacting RNA) pathway is a small RNA silencing system that acts in animal gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ~50 genes that strongly impact the ovarian somatic piRNA pathway.
View Article and Find Full Text PDFPIWI proteins and their bound PIWI-interacting RNAs (piRNAs) form the core of a gonad-specific small RNA silencing pathway that protects the animal genome against the deleterious activity of transposable elements. Recent studies linked the piRNA pathway to TUDOR biology as TUDOR domains of various proteins bind symmetrically methylated Arginine residues in PIWI proteins. We systematically analysed the Drosophila TUDOR protein family and identified four previously not characterized TUDOR domain-containing proteins (CG4771, CG14303, CG11133 and CG31755) as essential piRNA pathway factors.
View Article and Find Full Text PDF