The development of nanoclusters based on incorporating biomolecules like proteins, lipids, enzymes, DNA, surfactants, and chemical stabilizers creates a stable and high fluorescence bio-sensors promising future due to their high sensitivity, high level of detection and better selectivity. This review addresses a comprehensive and systematic overview of the recent development in synthesizing metal nanocluster by various strategized synthesis techniques. Significantly, the application of nanometal clusters for the detection of various food contaminants such as microorganisms, antibodies, drugs, pesticides, metal contaminants, amino acids, and other food flavors have been discussed briefly concerning the detection techniques, sensitivity, selectivity, and lower limit of detection.
View Article and Find Full Text PDFUpconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
November 2021
The versatile photophysicalproperties, high surface-to-volume ratio, superior photostability, higher biocompatibility, and availability of active sites make graphene quantum dots (GQDs) an ideal candidate for applications in sensing, bioimaging, photocatalysis, energy storage, and flexible electronics. GQDs-based sensors involve luminescence sensors, electrochemical sensors, optical biosensors, electrochemical biosensors, and photoelectrochemical biosensors. Although plenty of sensing strategies have been developed using GQDs for biosensing and environmental applications, the use of GQDs-based fluorescence techniques remains unexplored or underutilized in the field of food science and technology.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are inevitably a key biopolymer that has the potential to replace the conventional petrochemical based plastics that pose jeopardy to the environment globally. Even then the reach of PHA in the common market is so restricted. The economy of PHA is such that, even after several attempts the overall production cost seems to be high and this very factor surpasses PHAs usage when compared to the conventional polymers.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2020
Phytochemicals sources have been extensively used as reducing and capping agents for synthesis of nanoparticles (NPs). However, morphology-controlled synthesis and shape/size dependent applications of these NPs still need to be explored further, and there is a need to develop a way in which particular and optimized phytochemicals result in the desired NPs in lesser time and cost with higher reproducibility rate. The present study is focused on morphology-controlled synthesis and shape/size dependent application of silver NPs based on the fractionated phytochemicals of Elaeagnus umbellata extract (EU).
View Article and Find Full Text PDFThis work aims to evaluate the removal of pharmaceutical drug using discarded biodiesel waste-derived lignocellulosic-based activated carbon biomaterial. Lignocellulosic-based activated carbon (LAC) biomaterial was prepared from Jatropha shell (biodiesel processing waste) by a zinc chloride activation method. The LAC biomaterial was characterized using various techniques including powder XRD, FT-IR, SEM-EDAX, and BET analysis.
View Article and Find Full Text PDFBiosurfactants are one among the best alternative for synthetic surfactants that are exploited by many researchers. Several agro wastes help to reduce the cost biosurfactants by being renewable and economical. The present research focuses on the biosurfactant production from Pseudomonas mosselii utilizing Parthenium hysterophorus as a relatively cheap substrate.
View Article and Find Full Text PDFThe present study focuses on the optimization of the bioprocess for the fermentative production of polyhydroxyalkanoate (PHA) by Acinetobacter junii BP 25 using rice mill effluent as a cheap substrate, henceforth to develop an economically feasible biopolymer production process. Statistical tools like Plackett-Burman design (PBD) and Response Surface Methodology (RSM) were used to evaluate the important variables that influence the yield of PHA. Initially from PBD three factors (glycerol, KHPO and incubation time) were taken for further optimization using Box-Behnken design where, the interaction between each of the factors were studied in detail, providing a final optimized media for the high concentration of PHA.
View Article and Find Full Text PDFBiodegradation
August 2019
The current research focuses on the production and characterization of glycolipid biosurfactant (GB) from Pseudomonas plecoglossicida and its anthelmintic activity against Caenorhabditis elegans. The GB was purified and characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography and Mass Spectrometry (GC-MS) analysis. Anthelmintic activity of GB was studied at six different pharmacological doses from 10 to 320 µg/mL on C.
View Article and Find Full Text PDFThe present study focuses on the optimization of biosurfactant (BS) production using two potential biosurfactant producer NA3 and MN3 and role of enzymes in the biodegradation of crude oil. The optimal conditions for NA3 and MN3 for biodegradation were pH of 8 and 7; temperature of 30 and 40 °C, respectively. NA3 and MN3 produced 3.
View Article and Find Full Text PDFThe potential use of parboiled rice mill effluent as a cheap substrate for the production of homopolymer and copolymer of Polyhydroxyalkanoates (PHAs) by Acinetobacter junii BP 25 was investigated for the first time. Process optimization by one factor at a time led to homopolymer polyhydroxybutyrate (PHB) production of 2.64 ± 0.
View Article and Find Full Text PDF