Publications by authors named "Kaizhu Zeng"

High-entropy alloys (HEAs) are promising catalysts particularly adept for reactions involving multiple intermediates and requiring multifunctional active sites. However, conventional syntheses often result in either (kinetically) random-mixing HEA or (thermodynamically) phase-separated composites-both fail to fine-tune local structures and further optimizing their performances. Here we present finely tailoring the local ensembles in HEA catalysts through rational composition design and sequential pulsed annealing.

View Article and Find Full Text PDF

Heterojunctions are sustainable solutions for the photocatalytic CO reduction reaction (CORR) by regulating charge separation behavior at the interface. However, their efficiency and product selectivity are severely hindered by the inflexible and weak built-in electric field and the electronic structure of the two phases. Herein, ferroelectric-based heterojunctions between polarized bismuth ferrite (BFO(P)) and CdS are constructed to enhance the interfacial interactions and catalytic activity.

View Article and Find Full Text PDF

To lower the risk of disease and improve health, many nutrients benefit from intestinal-targeted delivery. Here, we present a nutrient-delivery system based on a pH-responsive "wood scroll", in which nutrients are stored, protected, and controllably released through the rolled structure and natural microchannels of a flexible wood substrate, thus ensuring higher bioactivity as well as prolonged steady release of the nutrient load to the intestine. We loaded the wood's natural microchannels with probiotics as a proof-of-concept demonstration.

View Article and Find Full Text PDF

Although a comparatively robust method, immobilized protein-based techniques have displayed limited precision and inconsistent results due to a lack of strategy for the accurate selection of drug adsorption models on the protein surface. We generated the adsorption data of three drugs on immobilized beta-2-adrenoceptor (β-AR) by frontal affinity chromatography-mass spectrometry (FAC-MS) and site-specific competitive FAC-MS. Using adsorption energy distribution (AED) calculations, we achieved the best adsorption models for the binding of salbutamol, terbutaline, and pseudoephedrine to immobilized β-AR.

View Article and Find Full Text PDF

Protein immobilization techniques play an important role in the development of assays for disease diagnosis and drug discovery. However, many of these approaches are not applicable to transmembrane proteins. G protein-coupled receptors (GPCRs) are the largest protein superfamily encoded by the human genome and are targeted by a quarter of all prescription drugs.

View Article and Find Full Text PDF

Owing to the promising clinical efficacy and relatively simple composition, Shuang-Huang-Lian prescription is widely prescribed for the treatment of acute upper respiratory tract infection and acute bronchitis in practice. This necessitates the understanding of the bioactive compounds of the prescription and their binding mechanism to β -adrenoceptor, which mediates the aforementioned ailments. In this work, a column containing immobilized β -adrenoceptor was prepared using a diazonium salt reaction.

View Article and Find Full Text PDF

Drug-protein interaction analysis has become a considerable topic in life science which includes clarifying protein functions, explaining drug action mechanisms and uncovering novel drug candidates. This work was to determine the association constants (K ) of six drugs to β -adrenergic receptor by injection amount-dependent method using stationary phase containing the immobilized receptor. The values of K were calculated to be (25.

View Article and Find Full Text PDF

As a xanthine derivative, doxofylline is believed to be dominant for fighting against asthma in practice. Unlike other xanthines, the antiasthmatic effects of doxofylline lack any definite proof of target and mediating mechanism according to previous reports. In this work, the interaction between doxofylline and β2 -AR was investigated by high performance affinity chromatography using frontal analysis and nonlinear model.

View Article and Find Full Text PDF