Publications by authors named "Jungwook Chin"

Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by neurotoxicity, excessive inflammation, and cognitive impairment. The peroxisome proliferator-activated receptor (PPAR) δ is a potential target for AD. However, its regulatory mechanisms and therapeutic potential in AD remain unclear.

View Article and Find Full Text PDF

As a defense mechanism against deleterious stimuli, inflammation plays a vital role in the development of many disorders, including atherosclerosis, inflammatory bowel disease, experimental autoimmune encephalomyelitis, septic and non-septic shock, and non-alcoholic fatty liver disease (NAFLD). Despite the serious adverse effects of extended usage, traditional anti-inflammatory medications, such as steroidal and non-steroidal anti-inflammatory medicines (NSAIDs), are commonly used for alleviating symptoms of inflammation. The PPARδ subtype of peroxisome proliferator-activated receptors (PPARs) has attracted interest because of its potential for reducing inflammation and related disorders.

View Article and Find Full Text PDF

Backgruound: Excessive proliferation and migration of vascular smooth muscle cells (VSMCs), which contributes to the development of occlusive vascular diseases, requires elevated mitochondrial oxidative phosphorylation to meet the increased requirements for energy and anabolic precursors. Therefore, therapeutic strategies based on blockade of mitochondrial oxidative phosphorylation are considered promising for treatment of occlusive vascular diseases. Here, we investigated whether DN200434, an orally available estrogen receptor-related gamma inverse agonist, inhibits proliferation and migration of VSMCs and neointima formation by suppressing mitochondrial oxidative phosphorylation.

View Article and Find Full Text PDF

Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, induces ferroptosis in hepatocellular carcinoma (HCC) cells. Several pathways that mitigate sorafenib-induced ferroptosis confer drug resistance; thus strategies that enhance ferroptosis increase sorafenib efficacy. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated in human HCC tissues and plays a role in cancer cell proliferation.

View Article and Find Full Text PDF

Five new bicyclic carboxylic acids were obtained by antibacterial activity-guided isolation from a Korean colonial tunicate sp. Their structures were elucidated by the interpretation of NMR, MS and CD spectroscopic data. They all belong to the class of aplidic acids.

View Article and Find Full Text PDF

Nuclear receptor-binding SET domain (NSD) proteins are a class of histone lysine methyltransferases (HKMTases) that are amplified, mutated, translocated, or overexpressed in various types of cancers. Several campaigns to develop NSD inhibitors for cancer treatment have begun following recent advances in knowledge of NSD1, NSD2, and NSD3 structures and functions as well as the U.S.

View Article and Find Full Text PDF

Psiguadial B (8), and its fluoro- (8a), chloro- (8b), and bromo- (8c) derivatives were synthesized using a sodium acetate-catalyzed single step coupling of three components: β-caryophyllene (5), diformylphloroglucinol (11), and benzaldehyde (12). These compounds efficiently and dose-dependently decreased HO-induced cell death, a quantitative marker of cell death, in primary cultures of mouse cortical neurons. Psiguadial B also decreased neuronal death and accumulation of ROS induced by FeCl in cortical cultures.

View Article and Find Full Text PDF

The silencing of thyroid-related genes presents difficulties in radioiodine therapy for anaplastic thyroid cancers (ATCs). Tunicamycin (TM), an N-linked glycosylation inhibitor, is an anticancer drug. Herein, we investigated TM-induced restoration of responsiveness to radioiodine therapy in radioiodine refractory ATCs.

View Article and Find Full Text PDF

Lycii Fructus is a traditional medicine used to prevent liver and kidney diseases, which commonly derives from and . Here, the extracts and ethyl acetate-soluble fractions of fruits exhibited better hepatoprotective effects than those of , which was likely due to differences in their composition. Therefore, GC-MS and HPLC analyses were conducted to characterize the metabolite differences between and .

View Article and Find Full Text PDF

Natural products with antioxidant and anti-inflammatory properties are important sources of therapeutic agents. The nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is a well-known defense system against oxidative stress. In this study, a panel of extracts of plants, fungi, and bacteria were screened for Nrf2 activation in a cell-based assay and a crude extract of cultured marine Streptomyces sp.

View Article and Find Full Text PDF

Estrogen-related receptor gamma (ERRγ) is the NR3B subgroup of associated transcription factors. In this report, a new generation of a potent and selective ERRγ inverse agonist (25) with good biocompatibility was proposed. We also explored the potential of the newly developed compound 25 in the PDTC model to expand the original indications from ATC.

View Article and Find Full Text PDF

One of the three subtypes of the peroxisome proliferator-activated receptor (PPAR) functioning as a transcription factor is the PPARβ or PPARδ. PPARδ is crucial to pathophysiological processes, including metabolic disorders, liver diseases, and cardiovascular diseases. In the past, the clinical development of PPARδ-selective agonist drugs has been stalled due to potential safety-related issues.

View Article and Find Full Text PDF

Decne (Chinese yam) has been widely cultivated in East Asia for the purposes of food and medicinal uses for centuries. Along with its high nutritional value, the medicinal value of has been extensively investigated in association with phytochemicals such as allantoin, flavonoids, saponins and phenanthrenes. Phenanthrenes are especially considered the standard marker chemicals of the Chinese yam for their potent bioactivity and availability of analysis with conventional high performance liquid chromatography with ultraviolet detection (HPLC-UV) methods.

View Article and Find Full Text PDF

Structure-based targeting of fluorescent dyes is essential for their use as imaging agents for disease diagnosis. Here, we describe the development of the benzoquinolizinium compound Medical fluorophore 1 (MF1) as a novel biomedical imaging agent that allows the visualization of inflammation by virtue of its unique chemical structure. Lipopolysaccharide treatment stimulated the uptake of MF1 by bone marrow-derived macrophages, with no adverse effects on cell proliferation.

View Article and Find Full Text PDF

As a potential treatment of type 2 diabetes, a novel PPARγ non-TZD full agonist, compound 18 (BR102375) was identified from the original lead BR101549 by the SAR efforts of the labile metabolite control through bioisosteres approach. In vitro assessments of BR102375 demonstrated its activating potential of PPARγ comparable to Pioglitazone as well as the induction of related gene expressions. Further in vivo evaluation of BR102375 in diabetic rodent models successfully proved its glucose lowering effect as a potential antidiabetic agent, but the anticipated suppression of weight gain was not evident.

View Article and Find Full Text PDF

Plasmonic nanostructure-mediated photothermal therapy (PTT) has proven to be a promising approach for cancer treatment, and new approaches for its effective delivery to tumor lesions are currently being developed. This study aimed to assess macrophage-mediated delivery of PTT using radioiodine-124-labeled gold nanoparticles with crushed gold shells (I-Au@AuCBs) as a theranostic nanoplatform. I-Au@AuCBs exhibited effective photothermal conversion effects both in vitro and in vivo and were efficiently taken up by macrophages without cytotoxicity.

View Article and Find Full Text PDF

Purpose: New strategies to restore sodium iodide symporter (NIS) expression and function in radioiodine therapy-refractive anaplastic thyroid cancers (ATCs) are urgently required. Recently, we reported the regulatory role of estrogen-related receptor gamma (ERRγ) in ATC cell NIS function. Herein, we identified DN200434 as a highly potent (functional IC = 0.

View Article and Find Full Text PDF

A cytotoxic alkaloidal meroterpenoid, saccharoquinoline (), has been isolated from the fermentation broth of the marine-derived bacterium sp. CNQ-490. The planar structure of was elucidated by 1D, 2D NMR, and MS spectroscopic data analyzes, while the relative configuration of was defined through the interpretation of NOE spectroscopic data.

View Article and Find Full Text PDF

An inverse agonist of estrogen-related receptor-γ (ERRγ), an orphan nuclear receptor encoded by E srrg, enhances sodium iodide symporter-mediated radioiodine uptake in anaplastic thyroid cancer (ATC) cells, thereby facilitating responsiveness to radioiodine therapy in vitro. We synthesized potent, selective, and orally bioavailable ERRγ-inverse agonists and evaluated their activity by analyzing in vitro pharmacology and absorption, distribution, metabolism, excretion, and toxicity profiles. X-ray crystallographic analysis of the ligand and ERRγ complex showed that 35 completely binds to the target protein (PDB 6A6K ).

View Article and Find Full Text PDF

The new class of PPARgamma non-TZD agonist originally derived from the backbone of anti-hypertensive Fimasartan, BR101549, was identified as a potential lead for anti-diabetic drug development. The X-ray crystallography of BR101549 with PPARgamma ligand binding domain (LBD) revealed unique binding characteristics versus traditional TZD full agonists. The lead candidate, BR101549, has been found activating PPARgamma to the level of Pioglitazone in vitro and indeed has demonstrated its effects on blood glucose control in mouse proof-of-concept evaluation.

View Article and Find Full Text PDF

Intensive study on the chemical components of a Korean marine sponge, sp., has led to the isolation of four new scalarane sesterterpenes, scalalactams A⁻D (⁻). Their chemical structures were elucidated from the analysis of spectroscopic data including 1D-and 2D-NMR as well as MS data.

View Article and Find Full Text PDF

Six seongsanamides were isolated from the culture broth of Bacillus safensis KCTC 12796BP, and their structures were elucidated by spectroscopic data analysis combined with Marfey's method, electronic circular dichroism calculations, and biosynthetic gene cluster analysis. Compounds 1-4 were bicyclic peptides with isodityrosine residues; 5 and 6 were monocyclic peptides. Only the bicyclic seongsanamides inhibited degranulation and LTC/PGD generation in IgE/Ag-stimulated bone marrow-derived mast cells.

View Article and Find Full Text PDF

Macropinocytosis is a regulated form of endocytosis that mediates the nonselective uptake of nutrients to support growth under nutrient-deprived conditions. KRAS-mutant cancer cells upregulate macropinocytosis to import extracellular proteins, which subsequently undergo proteolytic degradation in the lysosome. Although transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and function, its role in the degradation of extracellular protein from macropinocytosis in KRAS-mutant cells has not previously been elucidated.

View Article and Find Full Text PDF

Inspired by the well-known PPARγ partial agonism of angiotensin II type 1 receptor (AT1R) antagonists exemplified by an antihypertensive drug, Telmisartan, efforts to identify compounds with the dual activities have been pursued in order to control the two major metabolic disorders, hypertension and hyperglycemia simultaneously. Lead compound 18 derived from the AT1R antagonist, Fimasartan, has successfully presented the possibility to control the medical conditions by a single molecule.

View Article and Find Full Text PDF