A co-infection model between HIV and COVID-19 that takes into account COVID-19 vaccination and public awareness is discussed in this article. Rigorous analysis of the model is conducted to establish the existence and local stability conditions of the single-infection models. We discover that when the corresponding reproduction number for COVID-19 and HIV exceeds one, the disease continues to exist in both single-infection models.
View Article and Find Full Text PDFIn response to the complex multistable behavior observed in hydraulic rock drills during the drilling process, this study first establishes a four-degree-of-freedom physical model based on dry friction rock mechanics theory. The motion trajectory is classified into three states: non-viscous, impact viscous, and buffer viscous. Using the impact frequency ω as the bifurcation parameter, multistable attractors p0q1 and p1q2 are identified in the system when ω = 9.
View Article and Find Full Text PDFFunctionalised nonlinear structures employing structural instabilities for rapid response shape-shifting are emerging technologies with a wide range of potential applications. The truss is a widely employed model for such functionalised nonlinear structures; however, few studies have delved into its functionality when integrated with a complex dynamical system. This paper investigates its efficacy on enhancing the progression speed of a vibration-driven robot, known as the vibro-impact capsule robot, which is a piecewise-smooth dynamical system having abundant coexisting attractors.
View Article and Find Full Text PDFThis paper studies a computational approach aimed at establishing equivalent dynamical responses within oscillatory impacting systems subject to soft and rigid constraints. The proposed method incorporates an adaptive differential evolution algorithm with the Metropolis criterion to determine the stiffness and damping parameters of the soft constraint for a prescribed coefficient of restitution governing the rigid constraint. The proposed algorithm aims to establish an equivalent dynamical response of the two models based on constraints regarding energy dissipation and contact time duration.
View Article and Find Full Text PDFSince the earliest outbreak of COVID-19, the disease continues to obstruct life normalcy in many parts of the world. The present work proposes a mathematical framework to improve non-pharmaceutical interventions during the before vaccination settles herd immunity. The considered approach is built from the viewpoint of decision makers in developing countries where resources to tackle the disease from both a medical and an economic perspective are scarce.
View Article and Find Full Text PDFThe paper presents a comprehensive numerical study of mathematical models used to describe complex biological systems in the framework of integrated pest management. Our study considers two specific ecosystems that describe the application of control mechanisms based on pesticides and natural enemies, implemented in an impulsive and periodic manner, due to which the considered models belong to the class of impulsive differential equations. The present work proposes a numerical approach to study such type of models in detail, via the application of path-following (continuation) techniques for nonsmooth dynamical systems, via the novel continuation platform COCO (Dankowicz and Schilder).
View Article and Find Full Text PDFProc Math Phys Eng Sci
February 2018
This paper studies a position feedback control strategy for controlling a higher order drifting oscillator which could be used in modelling vibro-impact drilling. Special attention is given to two control issues, eliminating bistability and suppressing chaos, which may cause inefficient and unstable drilling. Numerical continuation methods implemented via the continuation platform COCO are adopted to investigate the dynamical response of the system.
View Article and Find Full Text PDFThis paper studies the prototype development for the self-propelled capsule system which is driven by autogenous vibrations and impacts under external resistance forces. This project aims for proof-of-concept of its locomotion in pipeline environment in order to mitigate the technical complexities and difficulties brought by current pressure-driven pipeline inspection technologies. Non-smooth multibody dynamics is applied to describe the motion of the capsule system, and two non-smooth nonlinearities, friction and impact, are considered in modelling.
View Article and Find Full Text PDFIn recent decades, Dengue fever and its deadly complications, such as Dengue hemorrhagic fever, have become one of the major mosquito-transmitted diseases, with an estimate of 390 million cases occurring annually in over 100 tropical and subtropical countries, most of which belonging to the developing world. Empirical evidence indicates that the most effective mechanism to reduce Dengue infections is to combat the disease-carrying vector, which is often implemented via chemical pesticides to destroy mosquitoes in their adult or larval stages. The present paper considers an SIR epidemiological model describing the vector-to-host and host-to-vector transmission dynamics.
View Article and Find Full Text PDFNonlinear Dyn
October 2017
The cyclic nature of the stick-slip phenomenon may cause catastrophic failures in drill-strings or at the very least could lead to the wear of expensive equipment. Therefore, it is important to study the drilling parameters which can lead to stick-slip, in order to develop appropriate control methods for suppression. This paper studies the stick-slip oscillations encountered in drill-strings from both numerical and experimental points of view.
View Article and Find Full Text PDFIn biochemical networks transient dynamics plays a fundamental role, since the activation of signalling pathways is determined by thresholds encountered during the transition from an initial state (e.g. an initial concentration of a certain protein) to a steady-state.
View Article and Find Full Text PDF