Publications by authors named "John T Abatzoglou"

Although half of Earth's population resides in the wildland-urban interface, human exposure to wildland fires remains unquantified. We show that the population directly exposed to wildland fires increased 40% globally from 2002 to 2021 despite a 26% decline in burned area. Increased exposure was mainly driven by enhanced colocation of wildland fires and human settlements, doubling the exposure per unit burned area.

View Article and Find Full Text PDF

Regions across the globe have experienced devastating fire years in the past decade with far-reaching impacts. Here, we examine the role of antecedent and concurrent climate variability in enabling extreme regional fire years across global forests. These extreme years commonly coincided with extreme (1-in-15-year) fire weather indices (FWI) and featured a four and five-fold increase in the number of large fires and fire carbon emissions, respectively, compared with non-extreme years.

View Article and Find Full Text PDF

Prescribed burning (RxB) is a land management tool used widely for reducing wildfire hazard, restoring biodiversity, and managing natural resources. However, RxB can only be carried out safely and effectively under certain seasonal or weather conditions. Under climate change, shifts in the frequency and timing of these weather conditions are expected but analyses of climate change impacts have been restricted to select few regions partly due to a paucity of RxB records at global scale.

View Article and Find Full Text PDF

Alfalfa has been vilified as one of the thirstiest crops in the semi-arid southwestern USA and partially responsible for decreased water security in the Colorado, Rio Grande and San Joaquin River basins. We demonstrate that adoption of summer deficit irrigation in alfalfa production can yield large water savings and flexibility to adapt to changing water supplies with minimal on-field economic impact. We estimate that deficit irrigation of alfalfa can save 1333 to 4157 million cubic meters of water annually (16-50 % of total alfalfa water use) over 926,000 ha in the southwestern USA if summer deficit irrigation (suspended after July 1) were implemented.

View Article and Find Full Text PDF

Climate change has increased forest fire extent in temperate and boreal North America. Here, we quantified the contribution of anthropogenic climate change to human mortality and economic burden from exposure to wildfire particulate matter at the county and state level across the contiguous US (2006 to 2020) by integrating climate projections, climate-wildfire models, wildfire smoke models, and emission and health impact modeling. Climate change contributed to approximately 15,000 wildfire particulate matter deaths over 15 years with interannual variability ranging from 130 (95% confidence interval: 64, 190) to 5100 (95% confidence interval: 2500, 7500) deaths and a cumulative economic burden of $160 billion.

View Article and Find Full Text PDF

An ongoing major challenge faced in portions of the western United States is to stop the decline of aquifers that are hydraulically connected to rivers. As these aquifers decline, streamflow is depleted, resulting in impacts to agriculture, environmental flows, and hydropower production. In 2014, the Idaho Water Resource Board initiated an aquifer recharge program, and in 2015 a historic settlement agreement (hereafter referred to as the Settlement Agreement) was signed by surface water users with senior water rights and groundwater pumpers with junior water rights to stop the decline of the eastern Snake Plain Aquifer (ESPA) in southern Idaho (SWC-IGWA 2015).

View Article and Find Full Text PDF

Rapid increases in wildfire area burned across North American forests pose novel challenges for managers and society. Increasing area burned raises questions about whether, and to what degree, contemporary fire regimes (1984-2022) are still departed from historical fire regimes (pre-1880). We use the North American tree-ring fire-scar network (NAFSN), a multi-century record comprising >1800 fire-scar sites spanning diverse forest types, and contemporary fire perimeters to ask whether there is a contemporary fire surplus or fire deficit, and whether recent fire years are unprecedented relative to historical fire regimes.

View Article and Find Full Text PDF

Lightning is a major source of wildfire ignition in the western United States (WUS). We build and train convolutional neural networks (CNNs) to predict the occurrence of cloud-to-ground (CG) lightning across the WUS during June-September from the spatial patterns of seven large-scale meteorological variables from reanalysis (1995-2022). Individually trained CNN models at each 1° × 1° grid cell ( = 285 CNNs) show high skill at predicting CG lightning days across the WUS (median AUC = 0.

View Article and Find Full Text PDF

Climate change increases fire-favorable weather in forests, but fire trends are also affected by multiple other controlling factors that are difficult to untangle. We use machine learning to systematically group forest ecoregions into 12 global forest pyromes, with each showing distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset declining emissions in tropical pyromes during 2001 to 2023.

View Article and Find Full Text PDF

Background: Climate change continues to increase the frequency, intensity, and duration of heat events and wildfires, both of which are associated with adverse pregnancy outcomes. Few studies simultaneously evaluated exposures to these increasingly common exposures.

Objectives: We investigated the relationship between exposure to heat and wildfire smoke and preterm birth (PTB).

View Article and Find Full Text PDF

The increasing prevalence of low snow conditions in a warming climate has attracted substantial attention in recent years, but a focus exclusively on low snow leaves high snow years relatively underexplored. However, these large snow years are hydrologically and economically important in regions where snow is critical for water resources. Here, we introduce the term "snow deluge" and use anomalously high snowpack in California's Sierra Nevada during the 2023 water year as a case study.

View Article and Find Full Text PDF

California contains a broad geography over which climate conditions can be suitable for cultivating multiple varieties of winegrapes. However, climate change is projected to make winegrape cultivation more challenging across many of California's winegrowing regions. In order to understand the potential effects of climate change on winegrapes, this study models variety-specific phenology for six winegrape varieties and quantifies the change in phenology and viticulturally-important agroclimate metrics over 12 of California's American Viticultural Areas (AVAs) by the mid-21st century.

View Article and Find Full Text PDF

We assembled the first gridded burned area (BA) database of national wildfire data (ONFIRE), a comprehensive and integrated resource for researchers, non-government organisations, and government agencies analysing wildfires in various regions of the Earth. We extracted and harmonised records from different regions and sources using open and reproducible methods, providing data in a common framework for the whole period available (starting from 1950 in Australia, 1959 in Canada, 1985 in Chile, 1980 in Europe, and 1984 in the United States) up to 2021 on a common 1° × 1° grid. The data originate from national agencies (often, ground mapping), thus representing the best local expert knowledge.

View Article and Find Full Text PDF
Article Synopsis
  • * Rising VPD interacts with soil moisture and drives drought conditions, impacting essential services like carbon capture, biodiversity, and agricultural productivity.
  • * The article reviews how VPD affects ecosystems and suggests management strategies to address these challenges, particularly in relation to water resources, agriculture, and wildfire management.
View Article and Find Full Text PDF

Importance: The rate of severe maternal morbidity (SMM) is continuously increasing in the US. Evidence regarding the associations of climate-related exposure, such as environmental heat, with SMM is lacking.

Objective: To examine associations between long- and short-term maternal heat exposure and SMM.

View Article and Find Full Text PDF

Record-breaking summer forest fires have become a regular occurrence in California. Observations indicate a fivefold increase in summer burned area (BA) in forests in northern and central California during 1996 to 2021 relative to 1971 to 1995. While the higher temperature and increased dryness have been suggested to be the leading causes of increased BA, the extent to which BA changes are due to natural variability or anthropogenic climate change remains unresolved.

View Article and Find Full Text PDF

Studies have identified elevation-dependent warming trends, but investigations of such trends in fire danger are absent in the literature. Here, we demonstrate that while there have been widespread increases in fire danger across the mountainous western US from 1979 to 2020, trends were most acute at high-elevation regions above 3000 m. The greatest increase in the number of days conducive to large fires occurred at 2500-3000 m, adding 63 critical fire danger days between 1979 and 2020.

View Article and Find Full Text PDF

Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be traveled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates.

View Article and Find Full Text PDF

Background: Significant mortality and morbidity in pregnant women and their offspring are linked to premature rupture of membranes (PROM). Epidemiological evidence for heat-related PROM risk is extremely limited. We investigated associations between acute heatwave exposure and spontaneous PROM.

View Article and Find Full Text PDF

We apply a convergence research approach to the urgent need for proactive management of long-term risk associated with wildfire in the United States. In this work we define convergence research in accordance with the US National Science Foundation-as a means of addressing a specific and compelling societal problem for which solutions require deep integration across disciplines and engagement of stakeholders. Our research team brings expertise in climate science, fire science, landscape ecology, and decision science to address the risk from simultaneous and impactful fires that compete for management resources, and leverages climate projections for decision support.

View Article and Find Full Text PDF

Escalating wildfire activity in the western United States has accelerated adverse societal impacts. Observed increases in wildfire severity and impacts to communities have diverse anthropogenic causes-including the legacy of fire suppression policies, increased development in high-risk zones, and aridification by a warming climate. However, the intentional use of fire as a vegetation management tool, known as "prescribed fire," can reduce the risk of destructive fires and restore ecosystem resilience.

View Article and Find Full Text PDF

Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon.

View Article and Find Full Text PDF