Nanomaterials (Basel)
July 2020
The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing.
View Article and Find Full Text PDFThe rapid development of nanotechnologies and increased production and use of nanomaterials raise concerns about their potential toxic effects for human health and environment. To evaluate the biological effects of nanomaterials, a set of reliable and reproducible methods and development of standard operating procedures (SOPs) is required. In the framework of the European FP7 NanoValid project, three different cell viability assays (MTS, ATP content, and caspase-3/7 activity) with different readouts (absorbance, luminescence and fluorescence) and two immune assays (ELISA of pro-inflammatory cytokines IL1-β and TNF-α) were evaluated by inter-laboratory comparison.
View Article and Find Full Text PDFSpecific information about the particle size distribution, agglomeration state, morphology, and chemical composition of four silica samples, used as additives in food and in personal care products, were achieved with a combination of analytical techniques. The combined use of differential centrifugal sedimentation (DCS), sedimentation field flow fractionation (SdFFF), and scanning and transmission electron microscopy (SEM and TEM) allows to classify the water dispersed samples as "nanomaterials" according to the EC definition. The mechanical stirring and the ultrasound treatment were compared as dispersion methods.
View Article and Find Full Text PDFIn the present work, we indicate that copper is involved in the senescence of human diploid fibroblasts and we describe mechanisms to explain it. Using different techniques, we show for the first time an accumulation of copper in cells during replicative senescence. This accumulation seems to be co-localized with lipofuscin.
View Article and Find Full Text PDFThe potential toxic effects of two types of copper(II) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines.
View Article and Find Full Text PDFThe potential toxic effects of copper oxide (CuO) nanoparticles (NPs) were studied on differentiated Caco-2 cell monolayers, a classical in vitro model of human small intestine epithelium. Two types of CuO NPs, with different specific surface area, different sizes as raw material but the same hydrodynamic diameter in suspension, differentially disturbed the monolayer integrity, were cytotoxic and triggered an increase of the abundance of several transcripts coding for pro-inflammatory cytokines and chemokines. Specific surface area was not a major variable explaining the increased toxicity when intestinal epithelium is exposed to rod-shaped CuO NPs, compared with spherical CuO NPs.
View Article and Find Full Text PDFWe validated a preclinical toxicological screening assay and provided guidelines to evaluate the potential impact of nanoparticles (NPs) on blood coagulation. Five NPs with various physicochemical properties were studied using several existing methods of clotting times and thrombin generation assays in human normal pool plasma. In both recalcification clotting time (RCT) and calibrated thrombin generation test (cTGT), the NPs exhibited procoagulant activity (SiO₂ ≥ SiC ≥ TiC > CuO > CB) but cTGT was more sensitive and relevant than RCT.
View Article and Find Full Text PDFHIF-1 (hypoxia-inducible factor-1) is the main transcription factor involved in the adaptation of cells to hypoxia. In addition to regulation of HIF-1alpha protein level, HIF-1 activity is also enhanced by several pathways involving asparagine hydroxylation and phosphorylation. Here, we investigated the relationship between casein kinase 2 (CK2), p53 and HIF-1.
View Article and Find Full Text PDFIn this work, we studied the apoptotic pathway in murine fibrosarcoma cells L929 exposed to tumor necrosis factor alpha (TNF-alpha). DNA fragmentation, activation of caspases, cytochrome c release and poly (ADP-ribose) polymerase cleavage were demonstrated. We showed that the proapoptotic proteins Bid and Bax as well as caspase 8 are involved in the initiation of this apoptotic pathway triggered by TNF-alpha.
View Article and Find Full Text PDFIncreased levels of Mcl-1 (myeloid cell factor-1) have been reported in several cancers, suggesting an important role played by Mcl-1 in cancer cell survival. Mcl-1 is an anti-apoptotic protein shown to delay or block apoptosis. In this work, using semiquantitative immunofluorescence, real-time PCR, and RNase protection assay, an increase in Mcl-1 expression was detected in hepatoma HepG2 cells incubated under hypoxia or in the presence of cobalt chloride.
View Article and Find Full Text PDFHypoxia inducible factor-1 (HIF-1) is the main transcriptional factor activated by hypoxia. Besides the well-described role assigned to HIF-1 in the adaptation of cells to hypoxia, different recent data describe a possible role for HIF-1 in the modulation of apoptosis. However, this precise role is not yet clearly understood.
View Article and Find Full Text PDFTert-butyl hydroperoxide (t-BHP) has been demonstrated to induce apoptosis in hepatoma cell line HepG2, but poor data were available on the signaling pathway initiated by t-BHP. In this work, we studied in details the apoptotic pathways induced in HepG2 cells by t-BHP. DNA fragmentation, activation of caspases and cytochrome c release were demonstrated.
View Article and Find Full Text PDFAstrocytomas and astrogliomas represent the most common types of primary tumors in human central nervous system and are associated with high mortality due to the absence of efficient therapy. Here we demonstrate that, upon antigen-specific activation, cytotoxic T-lymphocytes (CTLs) secrete products that inhibit proliferation and induce apoptosis in a significant proportion of astroglioma cell lines. This effect is tumor specific in that normal cultured astrocytes do not develop apoptotic changes upon exposure to supernatant of activated CTLs.
View Article and Find Full Text PDFHIF-1 (hypoxia-inducible factor-1) is the major transcription factor that is specifically activated during hypoxia. This transcription factor is composed of two subunits: HIF-1alpha and ARNT (aryl hydrocarbon receptor nuclear translocator). ARNT is constitutively expressed, whereas HIF-1alpha is targeted to proteasome degradation by ubiquitination during normoxia.
View Article and Find Full Text PDFHypoxia-inducible factor-1 (HIF-1) is the major transcription factor specifically activated by hypoxia. It induces the expression of different genes whose products play an adaptive role for hypoxic cells and tissues. Besides these protective responses, HIF-1 and/or hypoxia have also been shown to be either anti-apoptotic or pro-apoptotic, according to the cell type and experimental conditions.
View Article and Find Full Text PDF