Publications by authors named "Jaakko K Sarin"

In order to improve the ability of clinical diagnosis to differentiate articular cartilage (AC) injury of different origins, this study explores the sensitivity of mid-infrared (MIR) spectroscopy for detecting structural, compositional, and functional changes in AC resulting from two injury types. Three grooves (two in parallel in the palmar-dorsal direction and one in the mediolateral direction) were made via arthrotomy in the AC of the radial facet of the third carpal bone (middle carpal joint) and of the intermediate carpal bone (the radiocarpal joint) of nine healthy adult female Shetland ponies (age = 6.8 ± 2.

View Article and Find Full Text PDF

Osteoarthritis degenerates cartilage and impairs joint function. Early intervention opportunities are missed as current diagnostic methods are insensitive to early tissue degeneration. We investigated the capability of visible light-near-infrared spectroscopy (Vis-NIRS) to differentiate normal human cartilage from early osteoarthritic one.

View Article and Find Full Text PDF

Objective: To differentiate healthy from artificially degraded articular cartilage and estimate its structural, compositional, and functional properties using Raman spectroscopy (RS).

Design: Visually normal bovine patellae (n = 12) were used in this study. Osteochondral plugs (n = 60) were prepared and artificially degraded either enzymatically (via Collagenase D or Trypsin) or mechanically (via impact loading or surface abrasion) to induce mild to severe cartilage damage; additionally, control plugs were prepared (n = 12).

View Article and Find Full Text PDF

Introduction: Ascending aortic dilatation is a well-known risk factor for aortic rupture. Indications for aortic replacement in its dilatation concomitant to other open-heart surgery exist; however, cut-off values based solely on aortic diameter may fail to identify patients with weakened aortic tissue. We introduce near-infrared spectroscopy (NIRS) as a diagnostic tool to nondestructively evaluate the structural and compositional properties of the human ascending aorta during open-heart surgeries.

View Article and Find Full Text PDF

Purpose: To develop the means to estimate cartilage histologic grades and proteoglycan content in ex vivo arthroscopy using near-infrared spectroscopy (NIRS).

Methods: In this experimental study, arthroscopic NIR spectral measurements were performed on both knees of 9 human cadavers, followed by osteochondral block extraction and in vitro measurements: reacquisition of spectra and reference measurements (proteoglycan content, and three histologic scores). A hybrid model, combining principal component analysis and linear mixed-effects model (PCA-LME), was trained for each reference to investigate its relationship with in vitro NIR spectra.

View Article and Find Full Text PDF

In thoracic aortic aneurysm (TAA) of the ascending aorta (AA), AA is progressively dilating due to the weakening of the aortic wall. Predicting and preventing aortic dissections and ruptures in TAA continues to be challenging, and more accurate assessment of the AA dilatation, identification of high-risk patients, and timing of repair surgery are required. We investigated whether wall shear stress (WSS) predicts pathological and biomechanical changes in the aortic wall in TAA.

View Article and Find Full Text PDF

Knee ligaments and tendons play an important role in stabilizing and controlling the motions of the knee. Injuries to the ligaments can lead to abnormal mechanical loading of the other supporting tissues (e.g.

View Article and Find Full Text PDF

To prevent the progression of posttraumatic osteoarthritis, assessment of cartilage composition is critical for effective treatment planning. Posttraumatic changes include proteoglycan (PG) loss and elevated water content. Quantitative dual-energy computed tomography (QDECT) provides a means to diagnose these changes.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy is a powerful analytical method for rapid, non-destructive and label-free assessment of biological materials. Compared to mid-infrared spectroscopy, NIR spectroscopy excels in penetration depth, allowing intact biological tissue assessment, albeit at the cost of reduced molecular specificity. Furthermore, it is relatively safe compared to Raman spectroscopy, with no risk of laser-induced photothermal damage.

View Article and Find Full Text PDF

Chondral lesions lead to degenerative changes in the surrounding cartilage tissue, increasing the risk of developing post-traumatic osteoarthritis (PTOA). This study aimed to investigate the feasibility of quantitative magnetic resonance imaging (qMRI) for evaluation of articular cartilage in PTOA. Articular explants containing surgically induced and repaired chondral lesions were obtained from the stifle joints of seven Shetland ponies (14 samples).

View Article and Find Full Text PDF

Introduction: Assessment of cartilage integrity during arthroscopy is limited by the subjective visual nature of the technique. To address this shortcoming in diagnostic evaluation of articular cartilage, near infrared spectroscopy (NIRS) has been proposed. In this study, we evaluated the capacity of NIRS, combined with machine learning techniques, to classify cartilage integrity.

View Article and Find Full Text PDF

Near infrared spectroscopy (NIRS) is an analytical technique for determining the chemical composition or structure of a given sample. For several decades, NIRS has been a frequently used analysis tool in agriculture, pharmacology, medicine, and petrochemistry. The popularity of NIRS is constantly growing as new application areas are discovered.

View Article and Find Full Text PDF

Industrial chemical processes are struggling with adverse effects, such as corrosion and deposition, caused by gaseous alkali and heavy metal species. Mitigation of these problems requires novel monitoring concepts that provide information on gas-phase chemistry. However, selective optical online monitoring of the most problematic diatomic and triatomic species is challenging due to overlapping spectral features.

View Article and Find Full Text PDF

Near infrared (NIR) spectroscopy is a well-established technique that is widely employed in agriculture, chemometrics, and pharmaceutical engineering. Recently, the technique has shown potential in clinical orthopaedic applications, for example, assisting in the diagnosis of various knee-related diseases (e.g.

View Article and Find Full Text PDF

Conventional arthroscopic evaluation of articular cartilage is subjective and insufficient for assessing early compositional and structural changes during the progression of post-traumatic osteoarthritis. Therefore, in this study, arthroscopic near-infrared (NIR) spectroscopy is introduced, for the first time, for in vivo evaluation of articular cartilage thickness, proteoglycan (PG) content, and collagen orientation angle. NIR spectra were acquired in vivo and in vitro from equine cartilage adjacent to experimental cartilage repair sites.

View Article and Find Full Text PDF

Knee ligaments and tendons are collagen-rich viscoelastic connective tissues that provide vital mechanical stabilization and support to the knee joint. Deterioration of ligaments has an adverse effect on the health of the knee and can eventually lead to ligament rupture and osteoarthritis. In this study, the feasibility of near infrared spectroscopy (NIRS) was, for the first time, tested for evaluation of ligament and tendon mechanical properties by performing measurements on bovine stifle joint ligament (N = 40) and patellar tendon (N = 10) samples.

View Article and Find Full Text PDF

Arthroscopic assessment of articular tissues is highly subjective and poorly reproducible. To ensure optimal patient care, quantitative techniques (e.g.

View Article and Find Full Text PDF

Conventional arthroscopic evaluation of articular cartilage is subjective and poorly reproducible. Therefore, implementation of quantitative diagnostic techniques, such as near infrared spectroscopy (NIRS) and optical coherence tomography (OCT), is essential. Locations (n = 44) with various cartilage conditions were selected from mature equine fetlock joints (n = 5).

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy has been successful in nondestructive assessment of biological tissue properties, such as stiffness of articular cartilage, and is proposed to be used in clinical arthroscopies. Near-infrared spectroscopic data include absorbance values from a broad wavelength region resulting in a large number of contributing factors. This broad spectrum includes information from potentially noisy variables, which may contribute to errors during regression analysis.

View Article and Find Full Text PDF

Mechanical properties of articular cartilage are vital for normal joint function, which can be severely compromised by injuries. Quantitative characterization of cartilage injuries, and evaluation of cartilage stiffness and thickness by means of conventional arthroscopy is poorly reproducible or impossible. In this study, we demonstrate the potential of near infrared (NIR) spectroscopy for predicting and mapping the functional properties of equine articular cartilage at and around lesion sites.

View Article and Find Full Text PDF