98%
921
2 minutes
20
In order to improve the ability of clinical diagnosis to differentiate articular cartilage (AC) injury of different origins, this study explores the sensitivity of mid-infrared (MIR) spectroscopy for detecting structural, compositional, and functional changes in AC resulting from two injury types. Three grooves (two in parallel in the palmar-dorsal direction and one in the mediolateral direction) were made via arthrotomy in the AC of the radial facet of the third carpal bone (middle carpal joint) and of the intermediate carpal bone (the radiocarpal joint) of nine healthy adult female Shetland ponies (age = 6.8 ± 2.6 years; range 4-13 years) using blunt and sharp tools. The defects were randomly assigned to each of the two joints. Ponies underwent a 3-week box rest followed by 8 weeks of treadmill training and 26 weeks of free pasture exercise before being euthanized for osteochondral sample collection. The osteochondral samples underwent biomechanical indentation testing, followed by MIR spectroscopic assessment. Digital densitometry was conducted afterward to estimate the tissue's proteoglycan (PG) content. Subsequently, machine learning models were developed to classify the samples to estimate their biomechanical properties and PG content based on the MIR spectra according to injury type. Results show that MIR is able to discriminate healthy from injured AC (91%) and between injury types (88%). The method can also estimate AC properties with relatively low error (thickness = 12.7% mm, equilibrium modulus = 10.7% MPa, instantaneous modulus = 11.8% MPa). These findings demonstrate the potential of MIR spectroscopy as a tool for assessment of AC integrity changes that result from injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329391 | PMC |
http://dx.doi.org/10.1007/s10439-024-03540-x | DOI Listing |
Vet Surg
September 2025
Clinic for Small Animals, University of Veterinary Medicine Hannover, Hannover, Germany.
Objective: To describe and compare arthroscopy-assisted (AA) with fluoroscopy-assisted (FA) minimally invasive plate osteosynthesis (MIPO) for simple transverse acetabular fractures.
Study Design: Ex vivo cadaveric study.
Sample Population: A total of 10 canine cadavers (>20 kg) without coxofemoral joint disease.
J Vis Exp
August 2025
Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences;
Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease triggered by trauma or intense mechanical stress, leading to joint cartilage degeneration and functional impairment. Prostaglandin E2 (PGE2) contributes significantly to cartilage degradation following mechanical injury by activating its receptor, Prostaglandin E receptor 4 (EP4), on chondrocyte membranes. The homeostasis of articular cartilage primarily relies on the dynamic balance between cartilage degradation and repair, a process finely regulated by chondrocytes.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Heat shock protein family A member 4-like (HSPA4L) has been shown to be overexpressed in osteoarthritis (OA) patients, but its role in OA process still unknown. Chondrocytes were stimulated with interleukin-1β (IL-1β) to mimic OA cell model in vitro, and rat was injected with monosodium iodoacetate (MIA) to construct OA rat model in vivo. The expression of HSPA4L, methyltransferase-like 3 (METTL3) and extracellular matrix (ECM)-related markers was examined by qRT-PCR or western blot.
View Article and Find Full Text PDFJ Exp Orthop
July 2025
Department of Orthopedic Surgery, Institute for Locomotion Aix-Marseille University Marseille France.
Purpose: The posterior tibial slope (PTS) plays a key role in knee biomechanics and may influence the risk of anterior cruciate ligament (ACL) rupture as well as the outcomes of its reconstruction. We hypothesised that a steeper medial posterior tibial slope (MPTS) would be associated with an increased risk of bilateral ACL reconstruction compared to unilateral reconstruction. This study aimed to test this hypothesis by comparing the MPTS between patients undergoing unilateral ACL reconstruction (uniACLR) and those requiring non-simultaneous bilateral ACL reconstruction (biACLR), using radiographic imaging.
View Article and Find Full Text PDFJBJS Essent Surg Tech
September 2025
Division of Hand and Reconstructive Microsurgery, Department of Orthopedics, Olympia Hospital & Research Centre, Trichy, Tamilnadu, India.
Background: Hemi-hamate osteochondral grafting is a surgical technique that is utilized to reconstruct the proximal interphalangeal (PIP) joint in cases of unstable dorsal fracture-dislocation with >50% articular surface involvement. However, hemi-hamate osteochondral grafting can be technically challenging, has been reported to have various technical modifications, and can lead to complications such as overstuffing of the joint. This surgical technique article describes successful PIP joint reconstruction with use of a hemi-capitate osteochondral graft, which may offer a viable alternative to hemi-hamate osteochondral graft.
View Article and Find Full Text PDF