Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Near-infrared (NIR) spectroscopy has been successful in nondestructive assessment of biological tissue properties, such as stiffness of articular cartilage, and is proposed to be used in clinical arthroscopies. Near-infrared spectroscopic data include absorbance values from a broad wavelength region resulting in a large number of contributing factors. This broad spectrum includes information from potentially noisy variables, which may contribute to errors during regression analysis. We hypothesized that partial least squares regression (PLSR) is an optimal multivariate regression technique and requires application of variable selection methods to further improve the performance of NIR spectroscopy-based prediction of cartilage tissue properties, including instantaneous, equilibrium, and dynamic moduli and cartilage thickness. To test this hypothesis, we conducted for the first time a comparative analysis of multivariate regression techniques, which included principal component regression (PCR), PLSR, ridge regression, least absolute shrinkage and selection operator (Lasso), and least squares version of support vector machines (LS-SVM) on NIR spectral data of equine articular cartilage. Additionally, we evaluated the effect of variable selection methods, including Monte Carlo uninformative variable elimination (MC-UVE), competitive adaptive reweighted sampling (CARS), variable combination population analysis (VCPA), backward interval PLS (BiPLS), genetic algorithm (GA), and jackknife, on the performance of the optimal regression technique. The PLSR technique was found as an optimal regression tool (R = 75.6%, R = 64.9%) for cartilage NIR data; variable selection methods simplified the prediction models enabling the use of lesser number of regression components. However, the improvements in model performance with variable selection methods were found to be statistically insignificant. Thus, the PLSR technique is recommended as the regression tool for multivariate analysis for prediction of articular cartilage properties from its NIR spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702817726766 | DOI Listing |