A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimal Regression Method for Near-Infrared Spectroscopic Evaluation of Articular Cartilage. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Near-infrared (NIR) spectroscopy has been successful in nondestructive assessment of biological tissue properties, such as stiffness of articular cartilage, and is proposed to be used in clinical arthroscopies. Near-infrared spectroscopic data include absorbance values from a broad wavelength region resulting in a large number of contributing factors. This broad spectrum includes information from potentially noisy variables, which may contribute to errors during regression analysis. We hypothesized that partial least squares regression (PLSR) is an optimal multivariate regression technique and requires application of variable selection methods to further improve the performance of NIR spectroscopy-based prediction of cartilage tissue properties, including instantaneous, equilibrium, and dynamic moduli and cartilage thickness. To test this hypothesis, we conducted for the first time a comparative analysis of multivariate regression techniques, which included principal component regression (PCR), PLSR, ridge regression, least absolute shrinkage and selection operator (Lasso), and least squares version of support vector machines (LS-SVM) on NIR spectral data of equine articular cartilage. Additionally, we evaluated the effect of variable selection methods, including Monte Carlo uninformative variable elimination (MC-UVE), competitive adaptive reweighted sampling (CARS), variable combination population analysis (VCPA), backward interval PLS (BiPLS), genetic algorithm (GA), and jackknife, on the performance of the optimal regression technique. The PLSR technique was found as an optimal regression tool (R = 75.6%, R = 64.9%) for cartilage NIR data; variable selection methods simplified the prediction models enabling the use of lesser number of regression components. However, the improvements in model performance with variable selection methods were found to be statistically insignificant. Thus, the PLSR technique is recommended as the regression tool for multivariate analysis for prediction of articular cartilage properties from its NIR spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0003702817726766DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
variable selection
16
selection methods
16
optimal regression
12
regression
10
near-infrared spectroscopic
8
tissue properties
8
multivariate regression
8
regression technique
8
plsr technique
8

Similar Publications