98%
921
2 minutes
20
Mechanical properties of articular cartilage are vital for normal joint function, which can be severely compromised by injuries. Quantitative characterization of cartilage injuries, and evaluation of cartilage stiffness and thickness by means of conventional arthroscopy is poorly reproducible or impossible. In this study, we demonstrate the potential of near infrared (NIR) spectroscopy for predicting and mapping the functional properties of equine articular cartilage at and around lesion sites. Lesion and non-lesion areas of interests (AI, N = 44) of equine joints (N = 5) were divided into grids and NIR spectra were acquired from all grid points (N = 869). Partial least squares (PLS) regression was used to investigate the correlation between the absorbance spectra and thickness, equilibrium modulus, dynamic modulus, and instantaneous modulus at the grid points of 41 AIs. Subsequently, the developed PLS models were validated with spectral data from the grid points of 3 independent AIs. Significant correlations were obtained between spectral data and cartilage thickness (R = 70.3%, p < 0.0001), equilibrium modulus (R = 67.8%, p < 0.0001), dynamic modulus (R = 68.9%, p < 0.0001) and instantaneous modulus (R = 41.8%, p < 0.0001). Relatively low errors were observed in the predicted thickness (5.9%) and instantaneous modulus (9.0%) maps. Thus, if well implemented, NIR spectroscopy could enable arthroscopic evaluation and mapping of cartilage functional properties at and around lesion sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-016-1659-6 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDFACS Nano
September 2025
School of Medicine, Nankai University, Tianjin 300071, China.
In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Marine College, Shandong University, Weihai, 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 265599, China. Electronic address:
The treatment of chronic hard-to-heal wounds has become a major medical and public health problem worldwide. The search for novel and efficient wound healing dressings is crucial because of the complex mechanisms of wound genesis and of the inability to spontaneously repair. Many inherent properties of organisms in nature and their intrinsic molecular mechanisms have inspired researchers to design biomimetic hydrogel wound dressings to treat chronic hard-to-heal wounds.
View Article and Find Full Text PDFOsteoarthritis Cartilage
September 2025
Section of Rheumatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA. Electronic address:
Objective: Posthoc analysis of a canakinumab trial showed a risk reduction of joint replacement in participants with cardiac disease and elevated hsCRP (≥2mg/dL). We determined if hsCRP could serve as a marker to identify an inflammatory OA phenotype characterized by intra-articular synovitis.
Method: We used data from the NIH-funded MOST Study, where participants had baseline knee MRIs and hsCRP assays.
Osteoarthritis Cartilage
September 2025
Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden. Electronic address:
Aim: To summarise key epidemiological and therapeutic research on osteoarthritis (OA) published between April 2024 and March 2025.
Methods: A narrative review was conducted using the MEDLINE database, focusing on English-language studies involving human participants published between April 1, 2024 and March 31, 2025. Eligible studies included observational longitudinal studies, systematic reviews, meta-analyses, and phase II-IV randomised controlled trials (RCTs) examining OA treatment and epidemiology.