Periodontitis is a chronic infectious disease caused by plaque microorganisms, leading to the destruction of collagen fibers and alveolar bone absorption. Advanced stages of periodontitis require surgical intervention to regenerate periodontal tissues. Traditional guided tissue regeneration (GTR) membranes have limitations in promoting tissue regeneration, primarily due to insufficient antibacterial properties and inability to conform to various bone defect shapes.
View Article and Find Full Text PDFPhotodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues.
View Article and Find Full Text PDFBound phenolic compounds in the melon pulp have seldom been investigated. This study revealed considerable differences in the total phenolic content (TPC) and antioxidant activity of the free and bound phenolic extracts in the pulps of six melon varieties from Hainan Province, China. Naixiangmi and Yugu demonstrated the highest free TPC, while Meilong showed the highest bound and total TPC and antioxidant activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
In the treatment process of cancers like oral cancer, it is necessary to employ extensive surgical resection to achieve cancer eradication. However, this often results in damage to crucial functions such as chewing and speaking, leading to a poorer prognosis and a reduced quality of life. To address this issue, a multifunctional theranostic agent named MBPN-T-BTD has been developed by precisely modulating the excitation state energy distribution in the radiative/nonradiative decay pathways using the characteristics of twisted intramolecular charge transfer and aggregation-induced emission.
View Article and Find Full Text PDFPathogenic bacteria are widely distributed in diverse environments and significantly threaten human health. Point-of-care testing (POCT) is a valuable way for early warnings of bacteria threat. Herein, a chemiluminescence (CL)-based ratiometric sensing platform was constructed for sensitive POCT of bacteria according to a newly designed aggregation-induced emission (AIE) molecule.
View Article and Find Full Text PDFExtracellular vesicles (EVs) obtained from endothelial cells (ECs) have significant therapeutic potential in the clinical management of individuals with ischemic stroke (IS) because they effectively treat ischemic stroke in animal models. However, because molecular probes with both high labeling efficiency and tracer stability are lacking, monitoring the actions of EC-EVs in the brain remains difficult. The specific intracellular targets in the brain that EC-EVs act on to produce their protective effects are still unknown, greatly impeding their use in clinical settings.
View Article and Find Full Text PDFAdv Healthc Mater
September 2023
Targeted killing multidrug-resistant bacteria with high efficiency is urgently needed for the treatment of infection with minimal collateral damage. Herein, a new near-infrared (NIR) fluorescence nanoprobe is designed and synthesized with aggregation-induced emission (AIE) features, which also is excellent reactive oxygen species (ROS) generator. The as-prepared AIE nanoparticles (NPs) present outstanding sterilizing rate on methicillin-resistant Staphylococcus aureus (MRSA) and kanamycin-resistant Escherichia coli (KREC).
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
In photodynamic therapy (PDT), elevated reactive oxygen species (ROS) activate tumor cell protective autophagy, therefore attenuating the antitumor function of therapy. Hence, inhibition of protective autophagy in tumors can improve the antitumor effect of PDT. Herein, an innovative nanotraditional Chinese medicine system ((TP+A)@TkPEG NPs), which remodeled autophagy homeostasis, was fabricated.
View Article and Find Full Text PDFMultifunctional phototheranostics that integrate several diagnostic and therapeutic strategies into one platform hold great promise for precision medicine. However, it is really difficult for one molecule to possess multimodality optical imaging and therapy properties that all functions are in the optimized mode because the absorbed photoenergy is fixed. Herein, a smart one-for-all nanoagent that the photophysical energy transformation processes can be facilely tuned by external light stimuli is developed for precise multifunctional image-guided therapy.
View Article and Find Full Text PDFPeptide-aggregation-induced emission (AIE) luminogen (AIEgen) conjugates are widely used in the bioimaging field for their good resistance to photobleaching, red and near-infrared light emission, good biocompatibility, . However, their peptides are mainly negatively charged and the positively charged peptide-AIEgen conjugates are rarely used in imaging due to their high non-specific interaction with protein to cause "false-positive" results and their potential risk of triggering hemolysis. Herein, we introduce a black hole quencher 3 (BHQ3) to RVRRGFF-AIE (FA) to build a "turn-on" probe, named BHQ3-RVRRGFF-AIE (BFA).
View Article and Find Full Text PDFis a significant source of phenolics. Owing to the incessant demand of green extraction procedures for phenolics from , ultrasound-assisted extraction (UAE) using deep eutectic solvents (DESs) was optimized. Among the tested DESs, betaine-levulinic acid afforded the highest total phenolic content (TPC).
View Article and Find Full Text PDFDue to the aggregation-caused quenching (ACQ) and weak photo-penetrating ability, the application of phototheranostic agents in drug delivery field is greatly limited. Ferroptosis, a newly discovered cell death mode, has not been extensively studied in the field of phototherapy up to now. Here, a new near-infrared II (NIR-II) molecule with aggregation-induced emission (AIE) property (named TSST) co-assembled with DHA-PEG and ferrocene as nanoparticles (DFT-NP), which was rationally designed and synthesized.
View Article and Find Full Text PDFDendritic cell (DC)-derived small extracellular vesicles (DEVs) are recognized as a highly promising alternative to DC vaccines; however, the clinical testing of DEV-based immunotherapy has shown limited therapeutic efficacy. Herein, we develop a straightforward strategy in which DCs serve as a cell reactor to exocytose high-efficient DEV-mimicking aggregation-induced emission (AIE) nanoparticles (DEV-AIE NPs) at a scaled-up yield for synergistic photodynamic immunotherapy. Exocytosed DEV-AIE NPs inherit not only the immune-modulation proteins from parental DCs, enabling T cell activation, but also the loaded AIE-photosensitizer MBPN-TCyP, inducing superior immunogenic cell death (ICD) by selectively accumulating in the mitochondria of tumor cells.
View Article and Find Full Text PDFUltrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green extraction method for phytochemicals. In this study, the effects of 16 DESs coupled with UAE on the extraction rate of polyphenols from Paederia scandens (Lour.) Merr.
View Article and Find Full Text PDFSeaweeds are widely known superfood in coasts where most anthropogenic heavy metal discharges are inputted and stored. The present study analyzed 11 seaweed species and 13 heavy metals to test the hypothesis that the species-specific capacity of heavy metal bioaccumulation had great significance to health risk of human. The seaweeds were collected from tropic coasts of Hainan Island.
View Article and Find Full Text PDFTotal phenolic content (TPC), phenolic profiles, and antioxidant activity of free and bound extracts of Sargassum polycystum, obtained by different extraction solvents and hydrolysis methods, were investigated. Aqueous acetone afforded the highest free TPC and antioxidant ability, followed by aqueous ethanol and aqueous methanol. Twelve free phenolic compounds were identified by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS), including two hydroxycinnamic acids, seven flavonoids, one stilbene, and two phlorotannins.
View Article and Find Full Text PDFCell Rep Phys Sci
February 2022
Accurate and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significant for early tracing, isolation, and treatment of infected individuals, which will efficiently prevent large-scale transmission of coronavirus disease 2019 (COVID-19). Here, two kinds of test strips for receptor binding domain (RBD) and N antigens of SARS-CoV-2 are established with high sensitivity and specificity, in which AIE luminogens (AIEgens) are utilized as reporters. Because of the high brightness and resistance to quenching in aqueous solution, the limit of detection can be as low as 6.
View Article and Find Full Text PDFUnderstanding the mechanism and progression of neutrophil-involved diseases (e.g., acute inflammation) is of great importance.
View Article and Find Full Text PDFOrganic near-infrared room temperature phosphorescence materials have unparalleled advantages in bioimaging due to their excellent penetrability. However, limited by the energy gap law, the near-infrared phosphorescence materials (>650 nm) are very rare, moreover, the phosphorescence lifetimes of these materials are very short. In this work, we have obtained organic room temperature phosphorescence materials with long wavelengths (600/657-681/732 nm) and long lifetimes (102-324 ms) for the first time through the guest-host doped strategy.
View Article and Find Full Text PDFFluorescent probes capable of precise detection of atherosclerosis (AS) at an early stage and fast assessment of anti-AS drugs in animal level are particularly valuable. Herein, a highly bright aggregation-induced emission (AIE) nanoprobe is introduced by regulating the substituent of rhodanine for early detection of atherosclerotic plaque and screening of anti-AS drugs in a precise, sensitive, and rapid manner. With dicyanomethylene-substituted rhodanine as the electron-withdrawing unit, the AIE luminogen named TPE-T-RCN shows the highest molar extinction coefficient, the largest photoluminescence quantum yield, and the most redshifted absorption/emission spectra simultaneously as compared to the control compounds.
View Article and Find Full Text PDFThe development of photothermal agents with high photothermal conversion efficiency (PCE) can help to reduce drug and laser dosage, but still remains a big challenge. Herein, a novel approach is reported to design photothermal agents with high PCE values by promoting nonradiative heat generation processes through the cooperation of twisted intramolecular charge transfer (TICT) and molecular motions. Within the designed molecule 2DMTT-BBTD, the tetraphenylethenes act as molecular rotors, the long alkyl chain grafted thiophene helps to twist the molecular geometry to facilitate TICT state formation and preserve molecular motions in aggregate, while the strong electron-withdrawing BBTD unit enhances TICT effect.
View Article and Find Full Text PDF