Publications by authors named "Haibo Ling"

To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe) systems, we developed oxalate-modified nFe (nFe) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization (STEM and FT-IR) confirmed the formation of a FeCO/nFe heterostructure, where oxalate coordinated with Fe(II) to construct a semiconductor interface that effectively inhibits anoxic passivation while enabling continuous electron supply, achieving 100% Cr(VI) removal efficiency within 20 min at an optimal oxalate/Fe molar ratio of 1/29. Mechanistic studies revealed that the oxalate ligand accelerates electron transfer from the Fe core to the surface via the FeCO-mediated pathway, as evidenced by EIS and LSV test analyses.

View Article and Find Full Text PDF

Studies have demonstrated that point source emissions constitute the main direct source of PFASs in water. However, if production/usage and emission from a specific point are stopped, does the point source still present a threat to surrounding waters? In this study, the occurrence and potential human exposure to 17 PFASs in the surrounding ambient river and ground/drinking water within a 13 km around the facility were assessed. Of the 17 PFASs analyzed, 11 were frequently detected in river and groundwater samples, with perfluorobutane sulfonate (PFBS) (36.

View Article and Find Full Text PDF

Considerable research has been conducted to evaluate microplastics (MPs) as vehicles for the transfer of hazardous pollutants in organisms. However, little effort has been devoted to the chemical release of hazardous additive-derived pollutants from MPs in gut simulations. This study looked at the leaching kinetics of organophosphate esters (OPFRs) from polypropylene (PP) and polystyrene (PS) MPs in the presence of gut surfactants, specifically sodium taurocholate, at two biologically relevant temperatures for marine organisms.

View Article and Find Full Text PDF

It remains challenging to establish reliable links between transformation products (TPs) of contaminants and corresponding microbes. This challenge arises due to the sophisticated experimental regime required for TP discovery and the compositional nature of 16S rRNA gene amplicon sequencing and mass spectrometry datasets, which can potentially confound statistical inference. In this study, we present a new strategy by combining the use of H-labeled Stable Isotope-Assisted Metabolomics (H-SIAM) with a neural network-based algorithm (i.

View Article and Find Full Text PDF

Tetrachlorobisphenol A (TCBPA) has been used as an alternative flame retardant in various fields. However, the long-term effects of TCBPA on the nervous system remain unclear. Thus, Caenorhabditis elegans (L4 larvae) were selected as a model animal to investigate the neurotoxic effects and underlying mechanisms after 10 d of TCBPA exposure.

View Article and Find Full Text PDF

Antibiotics and pesticides are widespread in most rivers and lakes due to the overuse of antibiotics and pesticides, but there are few methods for simultaneous analysis of antibiotics and pesticides in aquatic environments. To address this knowledge gap, a concise and sensitive analytical method is proposed in which three classes of human and veterinary drugs (sulfonamides, macrolides, and hormones) and two classes of pesticides (organophosphorus and neonicotinoids) are simultaneously extracted and determined in surface water. The solid-phase extraction column with Cleanert PEP-2 was preconditioned sequentially with 6 mL of methanol, ultrapure water, and citric acid buffer (pH 3.

View Article and Find Full Text PDF

The suspected endocrine disruptor nonylphenol (NP) is closely associated with anthropogenic activities; therefore, studies on this compound have been clustered in urban areas. This study investigated the NP concentrations in drinking water sources (n = 8), terminal tap water (n = 36), and human urine samples (n = 127) collected from urban and rural areas in Wuhan, China. The mean concentrations of NP measured in drinking water sources in urban and rural areas were 92.

View Article and Find Full Text PDF
Article Synopsis
  • - Cancer remains a leading cause of sickness and death worldwide, creating a significant challenge for healthcare systems, despite recent advancements in treatment.
  • - Cancer cells often develop resistance to therapies, highlighting the urgent need for new chemotherapy options, such as artemisinin and its derivatives, which show strong safety and effectiveness against cancer.
  • - The review article explores the anticancer potential of artemisinin derivatives from 2017 to 2022, discussing their mechanisms, effects on cancer cells, and future design considerations for improving treatment efficacy.
View Article and Find Full Text PDF

The rapid spread of the coronavirus disease (COVID-19) pandemic in over 200 countries poses a substantial threat to human health. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, can be discharged with feces into the drainage system. However, a comprehensive understanding of the occurrence, presence, and potential transmission of SARS-CoV-2 in sewers, especially in community sewers, is still lacking.

View Article and Find Full Text PDF

Facing the ongoing coronavirus infectious disease-2019 (COVID-19) pandemic, many studies focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in indoor environment, on solid surface or in wastewater. It remains unclear whether SARS-CoV-2 can spill over into outdoor environments and impose transmission risks to surrounding people and communities. In this study, we investigated the presence of SARS-CoV-2 by measuring viral RNA in 118 samples from outdoor environment of three hospitals in Wuhan.

View Article and Find Full Text PDF

Sulfidated nanoscale valent iron in form of FeS/Fe (0) shell-core nanoparticle has the aptitude to be a promising remediation material toward reductive removal of metal oxyanions. However, disrupted contact between Fe (0) core and FeS shell by thick iron oxides limited its reactivity improvement, and its mechanism of electron transfer remains unveiled. In this study, a novel sulfidated nZVI core-shell particles (FeS/Fe (0)) was fabricated via a modified post sulfidation approach to achieve a more uniform coverage of FeS for aqueous Cr(VI) sequestration.

View Article and Find Full Text PDF

The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia raises the concerns of effective deactivation of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in medical wastewater by disinfectants. In this study, we evaluated the presence of SARS-CoV-2 viral RNA in septic tanks of Wuchang Cabin Hospital and found a striking high level of (0.5-18.

View Article and Find Full Text PDF

A heterogeneous manganese/magnetite/graphene oxide (Mn-MGO) hybrid catalyst was fabricated through the reduction of KMnO by ethylene glycol in the presence of magnetite/GO (MGO) particles. The Mn-MGO catalyst exhibited high efficacy and long-term stability in activating peroxymonosulfate (PMS) to generate sulfate radicals for the removal of bisphenol A (BPA) from water. The results of the batch experiments indicated that an increase in the catalyst dose and solution pH could enhance BPA degradation in the coupled Mn-MGO/PMS system.

View Article and Find Full Text PDF

Fe-based bulk metallic glasses (BMGs) have attracted great attention due to their unique magnetic and mechanical properties, but few applications have been materialized because of their brittleness at room temperature. Here we report a new Fe(50)Ni(30)P(13)C(7) BMG which exhibits unprecedented compressive plasticity (>20%) at room temperature without final fracture. The mechanism of unprecedented plasticity for this new Fe-based BMG was also investigated.

View Article and Find Full Text PDF