Publications by authors named "Gian Nicola Angotzi"

Achieving stable and continuous monitoring of signals of numerous single neurons in the brain faces the conflicting challenge of increasing the microelectrode count while minimizing cross-sectional shank dimensions to reduce tissue damage, foreign-body-reaction and maintain signal quality. Passive probes need to route each microelectrode individually to external electronics, thus increasing shank size and tissue-damage as the number of electrodes grows. Active complementary metal-oxide-semiconductor (CMOS) probes overcome the limitation in electrode count and density with on-probe frontend, addressing and multiplexing circuits, but current probes have relatively large shank widths of 70 - 100 μm.

View Article and Find Full Text PDF

The experimental use of CMOS high-density neural probes enables the wide field observation of the electrical activity of neural circuits at the resolution of single neurons. Optogenetic light stimulation allows to control and modulate the activity of neural cells, in a genetically selective manner. The combination of these techniques can be a powerful approach for investigating mechanisms of brain diseases and of information processing in the brain.

View Article and Find Full Text PDF

Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, a CMOS neural probe advancing lateral sampling for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm is demonstrated.

View Article and Find Full Text PDF

Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, we demonstrate the first CMOS neural probe for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm.

View Article and Find Full Text PDF

Tissue penetrating microelectrode neural probes can record electrophysiological brain signals at resolutions down to single neurons, making them invaluable tools for neuroscience research and Brain-Computer-Interfaces (BCIs). The known gradual decrease of their electrical interfacing performances in chronic settings, however, remains a major challenge. A key factor leading to such decay is Foreign Body Reaction (FBR), which is the cascade of biological responses that occurs in the brain in the presence of a tissue damaging artificial device.

View Article and Find Full Text PDF

Advancements in stem cell technology together with an improved understanding of organogenesis have enabled new routes that exploit cell-autonomous self-organization responses of adult stem cells (ASCs) and homogenous pluripotent stem cells (PSCs) to grow complex, three-dimensional (3D), mini-organ like structures on demand, the so-called organoids. Conventional optical and electrical neurophysiological techniques to acquire functional data from brain organoids, however, are not adequate for chronic recordings of neural activity from these model systems, and are not ideal approaches for throughput screenings applied to drug discovery. To overcome these issues, new emerging approaches aim at fusing sensing mechanisms and/or actuating artificial devices within organoids.

View Article and Find Full Text PDF

Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques.

View Article and Find Full Text PDF

Brain organoids is an exciting technology proposed to advance studies on human brain development, diseases, and possible therapies. Establishing and applying such models, however, is hindered by the lack of technologies to chronically monitor neural activity. A promising new approach comprising self-standing biosensing microdevices capable of achieving seamless tissue integration during cell aggregation and culture.

View Article and Find Full Text PDF

Active high-density electrode arrays realized with complementary metal-oxide-semiconductor (CMOS) technology provide electrophysiological recordings from several thousands of closely spaced microelectrodes. This has drastically advanced the spatiotemporal recording resolution of conventional multielectrode arrays (MEAs). Thus, today's electrophysiology in neuronal cultures can exploit label-free electrical readouts from a large number of single neurons within the same network.

View Article and Find Full Text PDF

Large-scale neural recordings with high spatial and temporal accuracy are instrumental to understand how the brain works. To this end, it is of key importance to develop probes that can be conveniently scaled up to a high number of recording channels. Despite recent achievements in complementary metal-oxide semiconductor (CMOS) multi-electrode arrays probes, in current circuit architectures an increase in the number of simultaneously recording channels would significantly increase the total chip area.

View Article and Find Full Text PDF

Microelectrode array (MEA) systems with up to several thousands of recording electrodes and electrical or optical stimulation capabilities are commercially available or described in the literature. By exploiting their submillisecond and micrometric temporal and spatial resolutions to record bioelectrical signals, such emerging MEA systems are increasingly used in neuroscience to study the complex dynamics of neuronal networks and brain circuits. However, they typically lack the capability of implementing real-time feedback between the detection of neuronal spiking events and stimulation, thus restricting large-scale neural interfacing to open-loop conditions.

View Article and Find Full Text PDF

Electrophysiological signals in the brain are distributed over broad spatial and temporal scales. Monitoring these signals at multiple scales is fundamental in order to decipher how brain circuits operate and might dysfunction in disease. A possible strategy to enlarge the experimentally accessible spatial and temporal scales consists in combining the use of multiple probes with different resolutions and sensing areas.

View Article and Find Full Text PDF

High-density surface microelectrodes for electrocorticography (ECoG) have become more common in recent years for recording electrical signals from the cortex. With an acceptable invasiveness/signal fidelity trade-off and high spatial resolution, micro-ECoG is a promising tool to resolve fine task-related spatial-temporal dynamics. However, volume conduction - not a negligible phenomenon - is likely to frustrate efforts to obtain reliable and resolved signals from a sub-millimeter electrode array.

View Article and Find Full Text PDF

Deciphering neural network function in health and disease requires recording from many active neurons simultaneously. Developing approaches to increase their numbers is a major neurotechnological challenge. Parallel to recent advances in optical Ca(2+) imaging, an emerging approach consists in adopting complementary-metal-oxide-semiconductor (CMOS) technology to realize MultiElectrode Array (MEA) devices.

View Article and Find Full Text PDF

One of the most difficult tasks for the surgeon during the removal of low-grade gliomas is to identify as precisely as possible the borders between functional and non-functional brain tissue with the aim of obtaining the maximal possible resection which allows to the patient the longer survival. For this purpose, systems for acute extracellular recordings of single neuron and multi-unit activity are considered promising. Here we describe a system to be used with 16 microelectrodes arrays that consists of an autoclavable headstage, a built-in inserter for precise electrode positioning and a system that measures and controls the pressure exerted by the headstage on the brain with a twofold purpose: to increase recording stability and to avoid disturbance of local perfusion which would cause a degradation of the quality of the recording and, eventually, local ischemia.

View Article and Find Full Text PDF

A portable 16-channels microcontroller-based wireless system for a bi-directional interaction with the central nervous system is presented in this work. The device is designed to be used with freely behaving small laboratory animals and allows recording of spontaneous and evoked neural activity wirelessly transmitted and stored on a personal computer. Biphasic current stimuli with programmable duration, frequency and amplitude may be triggered in real-time on the basis of the recorded neural activity as well as by the animal behavior within a specifically designed experimental setup.

View Article and Find Full Text PDF

Electrocorticography (ECoG) is becoming a common tool for clinical applications, such as preparing patients for epilepsy surgery or localizing tumor boundaries, as it successfully balances invasiveness and information quality. Clinical ECoG arrays use millimeter-scale electrodes and centimeter-scale pitch and cannot precisely map neural activity. Higher-resolution electrodes are of interest for both current clinical applications, providing access to more precise neural activity localization and novel applications, such as neural prosthetics, where current information density and spatial resolution is insufficient to suitably decode signals for a chronic brain-machine interface.

View Article and Find Full Text PDF

The ongoing interest in densely packed miniaturized electrode arrays for high-resolution epicortical recordings has induced many researchers to explore the use of nanomaterial coatings to reduce electrode impedance while increasing signal-to-noise ratio and charge injection capability. Although these materials are very effective, their use in clinical practice is strongly inhibited by concerns about the potential risks derived from the use of nanomaterials in direct contact with the human brain. In this work we propose a novel approach to safely couple nanocoated electrodes to the brain surface by encapsulating them with a biocompatible hydrogel.

View Article and Find Full Text PDF

Extracellular metal microelectrodes are widely used to record single neuron activity in vivo. However, their signal-to-noise ratio (SNR) is often far from optimal due to their high impedance value. It has been recently reported that carbon nanotube (CNT) coatings may decrease microelectrode impedance, thus improving their performance.

View Article and Find Full Text PDF