The control of instrumental actions engages distinct behavioral strategies whose contributions are regulated with experience. Instrumental performance, which depends on the causal relationship between actions and their outcomes (A-O), relies on flexible, goal-directed control of behavior. Actions can become less sensitive to changes in action-outcome (A-O) contingencies with repetition, resulting in more inflexible, habitual behaviors.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2024
The experimental use of CMOS high-density neural probes enables the wide field observation of the electrical activity of neural circuits at the resolution of single neurons. Optogenetic light stimulation allows to control and modulate the activity of neural cells, in a genetically selective manner. The combination of these techniques can be a powerful approach for investigating mechanisms of brain diseases and of information processing in the brain.
View Article and Find Full Text PDFBackground: Striatal circuits must be modulated for behavioral flexibility, the ability to adapt to environmental changes. Striatal astrocytes contribute to circuit neuromodulation by controlling the activity of ambient neurotransmitters. In particular, extracellular glutamate levels are tightly controlled by the astrocytic glutamate transporter EAAT2, influencing synaptic functioning and neural network activity.
View Article and Find Full Text PDF