Computational competitions are the standard for benchmarking medical image analysis algorithms, but they typically use small curated test datasets acquired at a few centers, leaving a gap to the reality of diverse multicentric patient data. To this end, the Federated Tumor Segmentation (FeTS) Challenge represents the paradigm for real-world algorithmic performance evaluation. The FeTS challenge is a competition to benchmark (i) federated learning aggregation algorithms and (ii) state-of-the-art segmentation algorithms, across multiple international sites.
View Article and Find Full Text PDFBackground: Artificial intelligence (AI)-enabled applications are increasingly being used in providing healthcare services, such as medical imaging support. Sufficient and appropriate education for medical imaging professionals is required for successful AI adoption. Although, currently, there are AI training programmes for radiologists, formal AI education for radiographers is lacking.
View Article and Find Full Text PDFMed Image Anal
November 2022
The success of neural networks on medical image segmentation tasks typically relies on large labeled datasets for model training. However, acquiring and manually labeling a large medical image set is resource-intensive, expensive, and sometimes impractical due to data sharing and privacy issues. To address this challenge, we propose AdvChain, a generic adversarial data augmentation framework, aiming at improving both the diversity and effectiveness of training data for medical image segmentation tasks.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2022
Detecting Out-of-Distribution (OoD) data is one of the greatest challenges in safe and robust deployment of machine learning algorithms in medicine. When the algorithms encounter cases that deviate from the distribution of the training data, they often produce incorrect and over-confident predictions. OoD detection algorithms aim to catch erroneous predictions in advance by analysing the data distribution and detecting potential instances of failure.
View Article and Find Full Text PDFWe introduce the novel concept of anti-transfer learning for speech processing with convolutional neural networks. While transfer learning assumes that the learning process for a target task will benefit from re-using representations learned for another task, anti-transfer avoids the learning of representations that have been learned for an orthogonal task, i.e.
View Article and Find Full Text PDFDifferences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors.
View Article and Find Full Text PDFDeep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers common imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound and major anatomical structures of interest (ventricles, atria, and vessels). In addition, a summary of publicly available cardiac image datasets and code repositories are included to provide a base for encouraging reproducible research.
View Article and Find Full Text PDFIn large population studies such as the UK Biobank (UKBB), quality control of the acquired images by visual assessment is unfeasible. In this paper, we apply a recently developed fully-automated quality control pipeline for cardiac MR (CMR) images to the first 19,265 short-axis (SA) cine stacks from the UKBB. We present the results for the three estimated quality metrics (heart coverage, inter-slice motion and image contrast in the cardiac region) as well as their potential associations with factors including acquisition details and subject-related phenotypes.
View Article and Find Full Text PDFIEEE Trans Med Imaging
June 2020
Quantification of anatomical shape changes currently relies on scalar global indexes which are largely insensitive to regional or asymmetric modifications. Accurate assessment of pathology-driven anatomical remodeling is a crucial step for the diagnosis and treatment of many conditions. Deep learning approaches have recently achieved wide success in the analysis of medical images, but they lack interpretability in the feature extraction and decision processes.
View Article and Find Full Text PDFThe effectiveness of a cardiovascular magnetic resonance (CMR) scan depends on the ability of the operator to correctly tune the acquisition parameters to the subject being scanned and on the potential occurrence of imaging artifacts, such as cardiac and respiratory motion. In the clinical practice, a quality control step is performed by visual assessment of the acquired images; however, this procedure is strongly operator-dependent, cumbersome, and sometimes incompatible with the time constraints in clinical settings and large-scale studies. We propose a fast, fully automated, and learning-based quality control pipeline for CMR images, specifically for short-axis image stacks.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
September 2018
Background: Cardiovascular resonance (CMR) imaging is a standard imaging modality for assessing cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time consuming and prone to subjective errors.
View Article and Find Full Text PDFBackground: Abnormalities in total cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides are associated with microvascular dysfunction. Recent studies suggest that lipid subfractions better predict atherogenic burden than a routine lipid panel. We sought to determine, whether lipid subfractions are more strongly associated with microvascular function and subclinical atherosclerosis, than conventional lipid measurements using vasodilator stress cardiovascular magnetic resonance (CMR).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Wearable devices equipped with photoplethysmography (PPG) sensors are gaining an increased interest in the context of biometric signal monitoring within clinical, e-health and fitness settings. When used in everyday life and during exercise, PPG traces are heavily affected by artifacts originating from motion and from a non constant positioning and contact of the PPG sensor with the skin. Many algorithms have been developed for the estimation of heart-rate from photoplethysmography signals.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2016
Intrauterine growth restriction (IUGR) is a fetal condition that has been linked to an increase in cardiovascular mortality in the adult life. IUGR induces cardiovascular remodeling, including a decrease in aortic intima-media thickness (aIMT) which can be evaluated using fetal ultrasound imaging, potentially improving IUGR assessment and cardiovascular risk management. A necessary step for aIMT quantification is the identification of a region-of-interest (ROI) containing the lumen.
View Article and Find Full Text PDFPurpose: To develop and validate a technique for near-automated definition of myocardial regions of interest suitable for perfusion evaluation during vasodilator stress cardiac magnetic resonance (MR) imaging.
Materials And Methods: The institutional review board approved the study protocol, and all patients provided informed consent. Image noise density distribution was used as a basis for endocardial and epicardial border detection combined with nonrigid registration.
Med Biol Eng Comput
June 2012
A new method for prosthetic component segmentation from fluoroscopic images is presented. The hybrid approach we propose combines diffusion filtering, region growing and level-set techniques without exploiting any a priori knowledge of the analyzed geometry. The method was evaluated on a synthetic dataset including 270 images of knee and hip prosthesis merged to real fluoroscopic data simulating different conditions of blurring and illumination gradient.
View Article and Find Full Text PDF