98%
921
2 minutes
20
Purpose: To develop and validate a technique for near-automated definition of myocardial regions of interest suitable for perfusion evaluation during vasodilator stress cardiac magnetic resonance (MR) imaging.
Materials And Methods: The institutional review board approved the study protocol, and all patients provided informed consent. Image noise density distribution was used as a basis for endocardial and epicardial border detection combined with nonrigid registration. This method was tested in 42 patients undergoing contrast material-enhanced cardiac MR imaging (at 1.5 T) at rest and during vasodilator (adenosine or regadenoson) stress, including 15 subjects with normal myocardial perfusion and 27 patients referred for coronary angiography. Contrast enhancement-time curves were near-automatically generated and were used to calculate perfusion indexes. The results were compared with results of conventional manual analysis, using quantitative coronary angiography results as a reference for stenosis greater than 50%. Statistical analyses included the Student t test, linear regression, Bland-Altman analysis, and κ statistics.
Results: Analysis of one sequence required less than 1 minute and resulted in high-quality contrast enhancement curves both at rest and stress (mean signal-to-noise ratios, 17±7 [standard deviation] and 22±8, respectively), showing expected patterns of first-pass perfusion. Perfusion indexes accurately depicted stress-induced hyperemia (increased upslope, from 6.7 sec(-1)±2.3 to 15.6 sec(-1)±5.9; P<.0001). Measured segmental pixel intensities correlated highly with results of manual analysis (r=0.95). The derived perfusion indexes also correlated highly with (r up to 0.94) and showed the same diagnostic accuracy as manual analysis (area under the receiver operating characteristic curve, up to 0.72 vs 0.73).
Conclusion: Despite the dynamic nature of contrast-enhanced image sequences and respiratory motion, fast near-automated detection of myocardial segments and accurate quantification of tissue contrast is feasible at rest and during vasodilator stress. This technique, shown to be as accurate as conventional manual analysis, allows detection of stress-induced perfusion abnormalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3480816 | PMC |
http://dx.doi.org/10.1148/radiol.12112475 | DOI Listing |
EJNMMI Rep
September 2025
Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan.
Background: Because the myocardium thickness and blood flow of the right ventricular (RV) are lower than those of the left ventricle, it is challenging to perceive the RV myocardium in normal individuals. This study aimed to measure the myocardial perfusion in the RV (myocardial blood flow [MBF], myocardial flow reserve [MFR]) from 13N-ammonia PET images and investigate the associations between the MBF and MFR in patients with and without coronary artery disease (CAD) in the right coronary artery (RCA) region. A total 121 MBF and MFR were retrospectively measured from PET images by referring to the radioactivity and clinical blood flow values of the left ventricle.
View Article and Find Full Text PDFJ Electrocardiol
August 2025
Department of Cardiology, Kırşehir Ahi Evran Training and Research Hospital, Kırşehir, Turkey. Electronic address:
Background: Ischemia with non-obstructive coronary arteries (INOCA) represents a diagnostic and therapeutic challenge, often related to coronary microvascular dysfunction (CMD). Identifying non-invasive electrocardiographic markers that predict ischemia in this population remains a clinical priority. P-wave peak time (PWPT), reflecting atrial conduction delay, has been linked to ischemic pathophysiology.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
September 2025
Royal Brompton and Harefield Hospitals, part of Guy's and St Thomas' NHS Foundation Trust, London, UK; National Heart and Lung Institute, Imperial College London, UK. Electronic address:
Background: Serial perfusion cardiovascular magnetic resonance (CMR) in symptomatic patients undergoing coronary artery bypass grafting (CABG) may provide mechanistic insight into dynamic abnormalities of the myocardium.
Objectives: To assess how changes in cardiac reperfusion and remodelling associate with symptom improvement in patients undergoing CABG METHODS: Patients awaiting elective CABG completed serial quality of life questionnaires and detailed CMR at baseline and at 6-12 months post CABG as per protocol. Automated fully quantitative stress and rest myocardial blood flow was calculated, alongside assessment of the visual ischaemic burden.
J Cardiovasc Magn Reson
September 2025
Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
Background: Although a recently developed wideband perfusion sequence has shown diagnostically acceptable image quality and accurate myocardial blood flow (MBF) quantification at rest in patients with cardiac implanted electronic devices (CIEDs), its performance during vasodilator stress remains unproven. This study aims to determine whether the sequence produces diagnostically acceptable image quality during stress and is capable of quantitatively detecting abnormal stress MBF and myocardial perfusion reserve (MPR) in patients with implanted cardiodefibrillators (ICDs).
Methods: We enrolled 29 patients with an ICD (mean age = 63 ± 15 years, 17 males, 12 females) and 11 control patients (mean age = 50 ± 17 years, 6 males, 5 females; negative coronary artery disease; negative stress perfusion CMR; and no cardiac event one year post CMR) with an ICD taped below the left clavicle to mimic image artifacts.
Curr Hypertens Rev
August 2025
Department of Radiology, School of Medicine, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran.
Introduction: Left Ventricular Dysfunction (LVD) is a frequent complication in Diabetes mellitus (DM) patients, often worsened by cardiovascular disease. This study explores the role of dipyridamole (DP)-induced heart rate variability and G-SPECT imaging in evaluating LVD in DM patients.
Aim: This study aimed to evaluate the relationship between heart rate ratio (HRR) during DP stress and LVD parameters derived from gated SPECT (G-SPECT) in DM patients, aiming to identify if HRR can serve as a marker for early LVD assessment.