Publications by authors named "Georgios Dimitrakis"

Energy in the microwave spectrum is increasingly applied in clean energy technologies. This review discusses recent innovations using microwave fields in hydrogen production and synthesis of new battery materials, highlighting the unique properties of microwave heating. Key innovations include microwave-assisted hydrogen generation from water, hydrocarbons and ammonia and the synthesis of high-performance anode and cathode materials.

View Article and Find Full Text PDF

The suitability of broadband dielectric spectroscopy (DS) as a tool for in-line (in situ) reaction monitoring is demonstrated. Using the esterification of 4-nitrophenol as a test-case, we show that multivariate analysis of time-resolved DS data-collected across a wide frequency range with a coaxial dip-probe-allows reaction progress to be measured with both high precision and high accuracy. In addition to the workflows for data collection and analysis, we also establish a convenient method for rapidly assessing the applicability of DS to previously untested reactions or processes.

View Article and Find Full Text PDF

We report on the ring-opening polymerization of ɛ-caprolactone incorporated with a magnetic susceptible catalyst, FeCl, the use of microwave magnetic heating (HH) which primarily heats the bulk with a magnetic field (H-field) from an electromagnetic field (EMF). Such a process was compared to more commonly used heating methods, such as conventional heating (CH), i.e.

View Article and Find Full Text PDF

Non-uniform temperature distribution within solid food is a major problem associated with microwave heating, which limits industrial applications. Therefore, an experimentally validated 3D model was proposed to study the effect of microwave applicator geometry on the electromagnetic field distribution and heating pattern of shrimp under different processing conditions. Simulation results were compared with physical experiments, in which a cooked peeled shrimp sample was heated using two different laboratory-scale microwave applicators (rectangular and cylindrical cavities).

View Article and Find Full Text PDF

An oxalate-bridged binuclear iron(III) ionic liquid combined with an imidazolium based cation, (dimim) [Fe Cl (μ-ox)], was synthesized and characterized by a wide range of techniques. This halometallate ionic liquid was active in catalyzing the depolymerization of polyethylene terephthalate (PET) by glycolysis, under conventional and microwave-assisted heating conditions. Both methodologies were very selective towards the production of bis(2-hydroxyethyl)terephthalate (BHET).

View Article and Find Full Text PDF

Synthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical-device-centered infections. The incidence rate for catheter-associated urinary tract infections is between 3% and 7% for each day of use, which means that infection is inevitable when resident for sufficient time. The O'Neill Review on antimicrobial resistance estimates that, left unchecked, ten million people will die annually from drug-resistant infections by 2050.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel setup allows for in situ small angle X-ray scattering during microwave annealing, enabling direct observation of its effects on a specific triblock copolymer system.
  • * The study finds that the block copolymer alone doesn't absorb microwaves effectively, but adding a small microwave-interactive molecule can lead to significant morphological changes, paving the way for advanced "smart" manufacturing techniques.
View Article and Find Full Text PDF

The use of dielectric property measurements to define specific trends in the molecular structures of poly(caprolactone) containing star polymers and/or the interbatch repeatability of the synthetic procedures used to generate them is demonstrated. The magnitude of the dielectric property value is shown to accurately reflect: (a) the number of functional groups within a series of materials with similar molecular size when no additional intermolecular order is present in the medium, (b) the polymer molecular size for a series of materials containing a fixed core material and so functional group number, and/or (c) the batch to batch repeatability of the synthesis method. The dielectric measurements are validated by comparison to spectroscopic/chromatographic data.

View Article and Find Full Text PDF

Background: The effective porosity is an important quantitative parameter for food products that has a significant effect on taste and quality. It is challenging to quantify the apparent porosity of fried potato crisps as they have a thin irregularly shaped cross section containing oil and water. This study uses a novel micro-CT technique to determine the solid volume fraction and hence the effective porosity of three types of potato crisps: standard continuously fried crisps, microwaved crisps, and continuously fried 'kettle' crisps.

View Article and Find Full Text PDF

Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars.

View Article and Find Full Text PDF

There is a growing body of literature which reports the use of silicon carbide vessels to shield reaction mixtures during microwave heating. In this paper we use electromagnetic simulations and microwave experiments to show that silicon carbide vessels do not exclude the electric field, and that dielectric heating of reaction mixtures will take place in addition to heat transfer from the silicon carbide. The contribution of dielectric heating and heat transfer depends on the dielectric properties of the mixture, and the temperature at which the reaction is carried out.

View Article and Find Full Text PDF

This paper explains the phenomena which occur in commercially available laboratory microwave equipment, and highlights several situations where experimental observations are often misinterpreted as a 'microwave effect'. Electromagnetic simulations and heating experiments were used to show the quantitative effects of solvent type, solvent volume, vessel material, vessel internals and stirring rate on the distribution of the electric field, the power density and the rate of heating. The simulations and experiments show how significant temperature gradients can exist within the heated materials, and that very different results can be obtained depending on the method used to measure temperature.

View Article and Find Full Text PDF

The presence of water can have a significant influence upon both the physical and dielectric properties of ionic liquids and consequently their ability to interact with microwaves. Herein we show that complex permittivity initially decreases as low concentrations of water are added to the system, the continued addition of water gives rise to an inversion in this trend. We propose that this minimum point may be used to identify water dimer formation.

View Article and Find Full Text PDF