Publications by authors named "Gayan Bamunuarachchi"

Bourbon virus (BRBV) is an emerging tick-borne virus that can cause severe and fatal disease in humans. BRBV is vectored via the tick, which is widely distributed throughout the central, eastern, and southern United States. Serosurveillance studies in Missouri and North Carolina identified BRBV-neutralizing antibodies in approximately 0.

View Article and Find Full Text PDF

The tick-borne pathogens, Bourbon virus (BRBV) and Heartland virus (HRTV) are the cause of febrile illnesses that may progress to severe and fatal diseases. As a preliminary effort to determine if these viruses were enzootic in Texas, ticks and blood samples were collected from feral swine () and white-tailed deer () (WTD) killed by gunning as part of an abatement program during 2019-2021 in Travis County, Texas. Ticks were collected from these animals by hand and blood samples were obtained by cardiac puncture using 22-gauge needles and 5 mL syringes.

View Article and Find Full Text PDF

Bourbon virus (BRBV) is an emerging pathogen that can cause severe and fatal disease in humans. BRBV is vectored by (lone star ticks), which are widely distributed across the central, southern, and eastern United States. Wildlife species are potentially important for the maintenance and transmission of BRBV, but little is known about which species are involved, and what other factors play a role in their exposure to BRBV.

View Article and Find Full Text PDF
Article Synopsis
  • - Bourbon virus is a virus transmitted by ticks that can lead to illness in humans.
  • - Cases have been documented in Kansas, Oklahoma, and Missouri, with antibody detection in patients from North Carolina.
  • - The prevalence of Bourbon virus infections may be underestimated, indicating a need for better diagnostic tools and monitoring systems.
View Article and Find Full Text PDF

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19.

View Article and Find Full Text PDF

Bourbon virus (BRBV) is an emerging pathogen that can cause severe and fatal disease in humans. BRBV is vectored by (lone star ticks), which are widely distributed across the central, southern, and eastern United States. Wildlife species are potentially important for the maintenance and transmission of BRBV, but little is known about which species are involved, and what other factors play a role in the exposure to BRBV.

View Article and Find Full Text PDF

Up to 25% of SARS-CoV-2 patients exhibit post-acute cognitive sequelae. Although millions of cases of COVID-19-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1, a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of COVID-19 patients.

View Article and Find Full Text PDF

An unstable influenza genome leads to the virus resistance to antiviral drugs that target viral proteins. Thus, identification of host factors essential for virus replication may pave the way to develop novel antiviral therapies. In this study, we investigated the roles of the poly(ADP-ribose) polymerase enzyme, tankyrase 1 (TNKS1), and the endogenous small noncoding RNA, miR-9-1, in influenza A virus (IAV) infection.

View Article and Find Full Text PDF

The long non-coding RNAs (lncRNAs) constitute an important class of the human transcriptome. The discovery of lncRNAs provided one of many unexpected results of the post-genomic era and uncovered a huge number of previously ignored transcriptional events. In recent years, lncRNAs are known to be linked with human diseases, with particular focus on cancer.

View Article and Find Full Text PDF

Acute respiratory infection by influenza virus is a persistent and pervasive public health problem. Antiviral innate immunity initiated by type I interferon (IFN) is the first responder to pathogen invasion and provides the first line of defense. We discovered that Axin1, a scaffold protein, was reduced during influenza virus infection.

View Article and Find Full Text PDF
Article Synopsis
  • Bourbon virus (BRBV), discovered in 2014, is primarily found in the lone star tick and has been detected in Missouri and Kansas, but only a few human cases have been identified.
  • A study developed two assays to test for BRBV neutralizing antibodies in human serum samples collected in 2020 from St. Louis, MO.
  • Out of 440 samples tested, 0.7% showed potent neutralization abilities, indicating that BRBV infections in humans may be more prevalent than previously recognized.
View Article and Find Full Text PDF

Background: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune-evasion properties have arisen, which could jeopardize recently deployed vaccine- and antibody-based countermeasures.

Methods: Here, we evaluated in mice and hamsters the efficacy of a pre-clinical version of the Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.

View Article and Find Full Text PDF

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In this study, we investigated the role of lncRNA on fibroblast proliferation.

View Article and Find Full Text PDF

Influenza virus infection through seasonal epidemics and occasional pandemics has been a major public health concern for decades. Incomplete protection from vaccination and increased antiviral resistance due to frequent mutations of influenza viruses have led to a continuous need for new therapeutic options. The functional significance of host protein and influenza virus interactions has been established, but relatively less is known about the interaction of host noncoding RNAs, including microRNAs and long noncoding RNAs, with influenza viruses.

View Article and Find Full Text PDF

Influenza A virus (IAV) infections result in a large number of deaths and substantial economic losses each year. MicroRNAs repress gene expression and are involved in virus-host interactions. miR-29a is known to have anti-tumor and anti-fibrotic effects.

View Article and Find Full Text PDF

Due to the frequent mutations, influenza A virus (IAV) becomes resistant to anti-viral drugs targeting influenza viral proteins. There are increasing interests in anti-viral agents that target host cellular proteins required for virus replication. Tankyrase (TNKS) has poly (ADP-ribose) polymerase activity and is a negative regulator of many host proteins.

View Article and Find Full Text PDF

Streptococcus pneumoniae is commonly found in patients with chronic obstructive pulmonary disease (COPD) and is linked to acute exacerbation of COPD. However, current clinical therapy neglects asymptomatic insidious S. pneumoniae colonization.

View Article and Find Full Text PDF

Due to an increasing emergence of new and drug-resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/β-catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/β-catenin signalling pathway.

View Article and Find Full Text PDF

Wnt/β-catenin signaling is an essential pathway in cell cycle control. Dysregulation of the Wnt/β-catenin signaling pathway during viral infection has been reported. In this study, we examined the effect of modulating Wnt/β-catenin signaling during influenza virus infection.

View Article and Find Full Text PDF

Background & Objectives: Artemisinin isolated from Artemisia annua is the most potent antimalarial against chloroquine resistant Plasmodium falciparum malaria. We previously reported that the ethanolic leaf extract of Artemisia vulgaris, an invasive weed and the only Artemisia species in Sri Lanka, possess both potent and safe antimalarial activity (in terms of antiparasitic properties) in a P. berghei murine malaria model.

View Article and Find Full Text PDF

Background & Objectives: Artemisinin isolated from Artemisia annua is the most potent antimalarial drug against chloroquine-resistant Plasmodium falciparum malaria. Artemisia vulgaris, an invasive weed, is the only Artemisia species available in Sri Lanka. A pilot study was undertaken to investigate the antiparasitic activity of an A.

View Article and Find Full Text PDF