Publications by authors named "Gaofei Song"

Although the formation of "palmelloid-like" cells as a response to environmental stress has been sporadically reported in Chlorella sp., the association between morphological and molecular indices has been poorly understood. Hence, this study investigated the morphological and molecular effects of ethanol stress on C.

View Article and Find Full Text PDF

Cadmium threatens eco-environmental security and human health, but the interaction between cadmium and microalgae cells remains unknown. This research examined the molecular detoxification mechanism of Synechocystis sp. to cadmium.

View Article and Find Full Text PDF

Algal organic matter (AOM) significantly influences the photochemical behavior of dissolved organic matter in aquatic environments. This study investigated the effects of chlorination on the photophysical and photochemical properties of AOM derived from Microcystis aeruginosa, compared these alterations with those observed for natural organic matter (NOM), and examined their impact on the photodegradation of organic contaminants, with a particular focus on N,N‑diethyl-m-toluamide (DEET) as a model substrate. The results demonstrated that chlorination substantially altered the photochemical reactivity of AOM.

View Article and Find Full Text PDF

has been proven as a potential resource for large-scale astaxanthin production, but little information on phytohormones for its growth and astaxanthin accumulation could be obtained. This study explored the impact of gibberellic acid-3 (GA3) on growth and astaxanthin biosynthesis in heterotrophic . After 6 days of cultivation with GA3, biomass and astaxanthin yields in 7.

View Article and Find Full Text PDF

Understanding the interactions between mercury and microalgae, especially the interactions between inorganic mercury (IHg) and extracellular polymeric substances (EPS, a protective barrier between cells and their external environment), is essential for elucidating mercury's toxicological mechanisms. Given the inherent cell heterogeneity, a novel analysis system of an online viscoelastic fluid focusing chip-time-resolved analysis inductively coupled plasma mass spectrometry has been developed to investigate the bioaccumulation of HgS nanoparticles and Hg in single () cells, exploring the interaction mechanisms between HgS/Hg accumulation in algal cells and EPS. The single-cell analysis results reveal minimal bioavailability of HgS within algal cells, with mercury's toxicity to being species-dependent.

View Article and Find Full Text PDF

The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems.

View Article and Find Full Text PDF

Periphytic algal colonization is common in aquatic systems, but its interspecific competition remains poorly understood. In order to fill the gap, the process of periphytic algal colonization in the Middle Route of the South to North Water Diversion Project was studied. The results showed that the process was divided into three stages: the initial colonization stage (T1, 3-6 days), community formation stage (T2, 12-18 days) and primary succession stage (T3, 24-27 days).

View Article and Find Full Text PDF

, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of strain. The biomass yield and lutein content of LUT-4 reached 9.

View Article and Find Full Text PDF

Cadmium ion (Cd) is a highly toxic metal in water, even at low concentrations. Microalgae are a promising material for heavy metal remediation. The present study investigated the effects of Cd on growth, photosynthesis, antioxidant enzyme activities, cell morphology, and Cd adsorption and accumulation capacity of the freshwater green alga .

View Article and Find Full Text PDF

Free available chlorine has been and is being applied in global water treatment and readily reacts with dissolved organic matter (DOM) in aquatic environments, leading to the formation of chlorinated products. Chlorination enhances the photoreactivity of DOM, but the influence of chlorinated compounds on the photogeneration of hydroxyl radicals (OH) has remained unexplored. In this study, a range of chlorinated carboxylate-substituted phenolic model compounds were employed to assess their OH photogeneration capabilities.

View Article and Find Full Text PDF

Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted by a vector insect, the Monochamus alternatus. The PWN has caused much extensive damage to pine-dominated forest ecosystems. Trunk injection of emamectin benzoate (EB) has been found to be the most useful protective measure against the PWN, due to its low effective dose and long residence time in the field.

View Article and Find Full Text PDF

Calcium peroxide (CP) is an oxidizing agent that can gradually release hydrogen peroxide (HP) to achieve selective killing of cyanobacteria in water blooms, and reduce the phosphorus content in the water column. Despite the potential of CP for use in cyanobacterial water bloom disposal, there is a lack of research on the mechanism of oxidative damage on cyanobacterial cells by calcium peroxide. Further studies are required to comprehend the underlying scientific principles and potential risks and benefits of applying this approach to cyanobacteria disposal.

View Article and Find Full Text PDF

The largest engineered water diversion project-the Middle Route of the South to North Water Diversion Project (MRP), is of strategic importance in solving the problem of the northern water shortage in China. Eukaryotic plankton are important to the water quality stability in the MRP, but little has been reported about their dynamics and assembly processes, especially for abundant and rare communities. In this study, amplicon sequencing was used to investigate the eukaryotic plankton communities.

View Article and Find Full Text PDF

With the development of single cell analysis techniques, the concept of precision toxicology has been proposed in recent years. Due to the heterogeneity of cells, we need to perform toxicological assessments on individual cells. Microalgae, one kind of important primary producers, play as a major pathway by which heavy metals enter the food chain and thus accumulate/transfer to higher trophic levels.

View Article and Find Full Text PDF

Single-cell studies can help to understand individual differences and obtain atypical cellular characteristics in view of cellular heterogeneity. Herein, the accumulation of mercury (Hg) in single algae cells was studied by droplet chip-time resolved inductively coupled plasma mass spectrometry analytical system, and the relation of Hg accumulation to the physiological responses of algae cell was explored. When low concentrations of Hg (5-20 μg/L) were used in the exposure experiment, the content of Hg in single cells increased in first 2 h, then decreased with further increase of exposure time to 96 h, probably due to the growth dilution effect of the algae.

View Article and Find Full Text PDF

, a flagellated unicellular protist, has recently received widespread attention for various high-value metabolites, especially paramylon, which was only found in Euglenophyta. The limited species and low biomass of has impeded paramylon exploitation and utilization. This study established an optimal cultivation method of AEW501 for paramylon production under mixotrophic cultivation.

View Article and Find Full Text PDF

Sepsis-associated encephalopathy (SAE) is often associated with increased ICU occupancy and hospital mortality and poor long-term outcomes, with currently no specific treatment. Pathophysiological mechanisms of SAE are complex and may involve activation of microglia, multiple intracranial inflammatory factors, and inflammatory pathways. We hypothesized that metformin may have an effect on microglia, which affects the prognosis of SAE.

View Article and Find Full Text PDF

Objective: To investigate the changes of intestinal microecology in the early stage of sepsis rat model by 16S rDNA sequencing.

Methods: Sixty male Sprague-Dawley (SD) rats were randomly divided into cecal ligation and puncture (CLP) group and sham operation group (Sham group), with 30 rats in each group. In the CLP group, sepsis rat model was reproduced by CLP method; the rats in the Sham group only underwent laparotomy without CLP.

View Article and Find Full Text PDF

Increased evidence shows that gut microbiota acts as the primary regulator of the liver; however, its role in sepsis-related liver injury (SLI) in the elderly is unclear. This study assessed whether metformin could attenuate SLI by modulating gut microbiota in septic-aged rats. Cecal ligation and puncture (CLP) was used to induce SLI in aged rats.

View Article and Find Full Text PDF

Sepsis-associated liver injury is with poor survival in intensive care units. Metformin is well known for its therapeutic effects; however, its impact on treating liver injury due to sepsis remains poorly understood. This study investigated the therapeutic effects of metformin on aged mice suffering from sepsis-associated liver injury.

View Article and Find Full Text PDF

Objective: Corticosteroids are a common option used in sepsis treatment. However, the efficacy and potential risk of corticosteroids in septic patients have not been well assessed. This review was performed to assess the efficacy and safety of corticosteroids in patients with sepsis.

View Article and Find Full Text PDF

Intensified efforts to curb transmission of the Severe Acute Respiratory Syndrome Coronavirus-2 might lead to an elevated concentration of disinfectants in domestic wastewater and drinking water in China, possibly resulting in the generation of numerous toxic disinfection byproducts (DBPs). In this study, the occurrence and distribution of five categories of DBPs, including six trihalomethanes (THMs), nine haloacetic acids (HAAs), two haloketones, nine nitrosamines, and nine aromatic halogenated DBPs, in domestic wastewater effluent, tap water, and surface water were investigated. The results showed that the total concentration level of measured DBPs in wastewater effluents (78.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms pose a risk to human health worldwide. To enhance understanding on the bloom-forming mechanism, the spatiotemporal changes in cyanobacterial diversity and composition in two eutrophic lakes (Erhai Lake and Lushui Reservoir) of China were investigated from 2010 to 2011 by high-throughput sequencing of environmental DNA. For each sample, 118 to 260 -IGS operational taxonomic units (OTUs) were obtained.

View Article and Find Full Text PDF

The sesquiterpene geosmin, mainly originating from cyanobacteria, is considered one of the problematic odor compounds responsible for unpleasant-tasting and -smelling water episodes in freshwater supplies. The biochemistry and genetics of geosmin synthesis in cyanobacteria is well-elucidated and the geosmin synthase gene (geo) has been cloned and characterized in recent years. However, understanding the diversity, origin, and evolution of geo has been hindered by the limited availability of geo sequences to date.

View Article and Find Full Text PDF