Publications by authors named "Eva Spieck"

Nitrification, a key process in the nitrogen cycle, involves the oxidation of ammonia to nitrite and nitrate by a diverse group of chemolithoautotrophic microorganisms. The order Nitrospirales (referred to in literature as the genus Nitrospira), which includes both nitrite-oxidizing and complete ammonia-oxidizing bacteria, plays a central role in this process. We sequenced the genomes of nine Nitrospirales members, incorporating genomes from previously unsequenced taxonomic Nitrospirales lineages.

View Article and Find Full Text PDF

The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of quinones, from low redox potential (LPQ) in anaerobes to HPQs in aerobes, is assumed to have followed Earth's surface oxygenation ~2.3 billion years ago.

View Article and Find Full Text PDF

The genus Nitrospira represents the dominant nitrite-oxidizing clade in most wastewater treatment plants (WWTPs) globally, and several Nitrospira strains have been isolated from activated sludge. Using a pre-enrichment strategy with alternating nitrifying and denitrifying conditions, followed by incubation at elevated temperatures, we isolated a novel Nitrospira species, named Nitrospira tepida. This moderately thermophilic species with optimal growth between 37 and 45°C is only distantly related to other Nitrospira and forms a novel lineage VII within the genus, together with few environmental 16S rRNA gene sequences predominantly detected in thermal wastewater or oxygen-limited systems.

View Article and Find Full Text PDF

Here, we present the complete genome sequence of Nitrospina watsonii 347, a nitrite-oxidizing bacterium isolated from the Black Sea at a depth of 100 m. The genome has a length of 3,011,914 bp with 2,895 predicted coding sequences. Its predicted metabolism is similar to that of Nitrospina gracilis with differences in defense against reactive oxygen species.

View Article and Find Full Text PDF

Chemolithoautotrophic production of nitrate is accomplished by the polyphyletic functional group of nitrite-oxidizing bacteria (NOB). A widely distributed and important NOB clade in nitrogen removal processes at low temperatures is Nitrotoga, which however remains understudied due to the scarcity of cultivated representatives. Here, we present physiological, ultrastructural and genomic features of Nitrotoga strains from various habitats, including the first marine species enriched from an aquaculture system.

View Article and Find Full Text PDF
Article Synopsis
  • Hopanoid lipids are unique bacterial membrane components used as biomarkers in geological records but their sources in aquatic environments are not well understood.
  • Recent studies indicate that various marine bacterioplankton, particularly nitrifying bacteria, have the potential to synthesize these hopanoids.
  • Analysis of hopanoid biosynthesis genes in different nitrifying bacteria shows that the production of diverse hopanoids is common, influenced by environmental factors like oxygen and nitrite availability.
View Article and Find Full Text PDF

Many biotechnological applications deal with nitrification, one of the main steps of the global nitrogen cycle. The biological oxidation of ammonia to nitrite and further to nitrate is critical to avoid environmental damage and its functioning has to be retained even under adverse conditions. Bacteria performing the second reaction, oxidation of nitrite to nitrate, are fastidious microorganisms that are highly sensitive against disturbances.

View Article and Find Full Text PDF

Bacterial hopanoid lipids are ubiquitous in the geologic record and serve as biomarkers for reconstructing Earth's climatic and biogeochemical evolution. Specifically, the abundance of 2-methylhopanoids deposited during Mesozoic ocean anoxic events (OAEs) and other intervals has been interpreted to reflect proliferation of nitrogen-fixing marine cyanobacteria. However, there currently is no conclusive evidence for 2-methylhopanoid production by extant marine cyanobacteria.

View Article and Find Full Text PDF

Nitrification is a key process for N-removal in engineered and natural environments, but recent findings of novel nitrifying microorganisms with surprising features revealed that our knowledge of this functional guild is still incomplete. Especially nitrite oxidation - the second step of nitrification - is catalyzed by a phylogenetically diverse bacterial group, and only recently bacteria of the phylum have been identified as thermophilic nitrite-oxidizing bacteria (NOB). Among these, was isolated from a laboratory-scale nitrifying bioreactor operated at 35°C with a high load of ammonium bicarbonate.

View Article and Find Full Text PDF

Permafrost-affected landscape soils are rich in organic matter and contain a high fraction of organic nitrogen, but much of this organic matter remains inaccessible due to nitrogen limitation. Microbial nitrification is a key process in the nitrogen cycle, controlling the availability of dissolved inorganic nitrogen (DIN) such as ammonium and nitrate. In this study, we investigate the microbial diversity of canonical nitrifiers and their potential nitrifying activity in the active layer of different Arctic cryosols in the Lena River Delta in North-East Siberia.

View Article and Find Full Text PDF

Nitrifying microorganisms occur across a wide temperature range from 4 to 84 °C and previous studies in geothermal systems revealed their activity under extreme conditions. Archaea were detected to be responsible for the first step of nitrification, but it is still a challenging issue to clarify the identity of heat-tolerant nitrite oxidizers. In a long-term cultivation approach, we inoculated mineral media containing ammonium and nitrite as substrates with biofilms and sediments of two hot springs in Yellowstone National Park (USA).

View Article and Find Full Text PDF

To sustain human deep space exploration or extra-terrestrial settlements where no resupply from the Earth or other planets is possible, technologies for food production, water, air, and waste recovery need to be developed. The Micro-Ecological Life Support System Alternative (MELiSSA) is such a Regenerative Life Support System (RLSS) and it builds on several bacterial bioprocesses. However, alterations in gravity, temperature, and radiation associated with the space environment can affect survival and functionality of the microorganisms.

View Article and Find Full Text PDF

Nitrification is an essential process for N removal in activated sludge to avoid toxicity of ammonium and nitrite. Besides , " Nitrotoga" has been identified as a key nitrite-oxidizing bacterium (NOB) performing the second step of nitrification, nitrite oxidation to nitrate, in wastewater treatment plants (WWTPs). However, the driving forces for the dominance of in certain plants have often remained unclear and could not be explained solely by temperature effects.

View Article and Find Full Text PDF

The genus is considered to be the most widespread and abundant group of nitrite-oxidizing bacteria in many natural and man-made ecosystems. However, the ecophysiological versatility within this phylogenetic group remains highly understudied, mainly due to the lack of pure cultures and genomic data. To further expand our understanding of this biotechnologically important genus, we analyzed the high quality draft genome of "" strain BS10, a sublineage II that was isolated from a municipal wastewater treatment plant in Hamburg, Germany.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrite-oxidizing bacteria (NOB), traditionally seen as focused on converting nitrite to nitrate, have shown potential for diverse biological roles beyond this specialization in recent studies.
  • *These bacteria, prevalent in marine environments, can also reduce nitrate, produce nitrous oxide (a harmful greenhouse gas), and participate in the sulfur cycle by oxidizing sulfide.
  • *This research suggests that as global ocean conditions change, NOB can adapt their functions in biogeochemical cycles, leading to significant environmental impacts.
View Article and Find Full Text PDF

The genomes of many bacteria that participate in nitrogen cycling through the process of nitrification contain putative genes associated with acyl-homoserine lactone (AHL) quorum sensing (QS). AHL QS or bacterial cell-cell signaling is a method of bacterial communication and gene regulation and may be involved in nitrogen oxide fluxes or other important phenotypes in nitrifying bacteria. Here, we carried out a broad survey of AHL production in nitrifying bacteria in three steps.

View Article and Find Full Text PDF

Here, we present the 3.9-Mb draft genome sequence of strain Ab, which was isolated from a sewage system in Hamburg, Germany. The analysis of its genome sequence will contribute to our knowledge of nitrite-oxidizing bacteria and acyl-homoserine lactone quorum sensing in nitrifying bacteria.

View Article and Find Full Text PDF

Thaumarchaeota are globally distributed and abundant microorganisms occurring in diverse habitats and thus represent a major source of archaeal lipids. The scope of lipids as taxonomic markers in microbial ecological studies is limited by the scarcity of comparative data on the membrane lipid composition of cultivated representatives, including the phylum Thaumarchaeota. Here, we comprehensively describe the core and intact polar lipid (IPL) inventory of ten ammonia-oxidising thaumarchaeal cultures representing all four characterized phylogenetic clades.

View Article and Find Full Text PDF

The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters.

View Article and Find Full Text PDF

The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8.

View Article and Find Full Text PDF

Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira.

View Article and Find Full Text PDF

The second step of nitrification, the oxidation of nitrite to nitrate, is vital for the functioning of the nitrogen cycle, but our understanding of the ecological roles of the involved microorganisms is still limited. The known diversity of Nitrospira, the most widely distributed nitrite-oxidizing bacteria, has increased remarkably by analyses of 16S rRNA and functional gene sequences. However, only few representatives could be brought into laboratory cultures so far.

View Article and Find Full Text PDF

Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga).

View Article and Find Full Text PDF

Numerous past studies have shown members of the genus Nitrospira to be the predominant nitrite-oxidizing bacteria (NOB) in nitrifying wastewater treatment plants (WWTPs). Only recently, the novel NOB 'Candidatus Nitrotoga arctica' was identified in permafrost soil and a close relative was enriched from activated sludge. Still, little is known about diversity, distribution and functional importance of Nitrotoga in natural and engineered ecosystems.

View Article and Find Full Text PDF

The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite.

View Article and Find Full Text PDF