Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemolithoautotrophic production of nitrate is accomplished by the polyphyletic functional group of nitrite-oxidizing bacteria (NOB). A widely distributed and important NOB clade in nitrogen removal processes at low temperatures is Nitrotoga, which however remains understudied due to the scarcity of cultivated representatives. Here, we present physiological, ultrastructural and genomic features of Nitrotoga strains from various habitats, including the first marine species enriched from an aquaculture system. Immunocytochemical analyses localized the nitrite-oxidizing enzyme machinery in the wide irregularly shaped periplasm, apparently without contact to the cytoplasmic membrane, confirming previous genomic data suggesting a soluble nature. Interestingly, in two strains we also observed multicellular complexes with a shared periplasmic space, which seem to form through incomplete cell division and might enhance fitness or survival. Physiological tests revealed differing tolerance limits towards dissolved inorganic nitrogen concentrations and confirmed the generally psychrotolerant nature of the genus. Moreover, comparative analysis of 15 Nitrotoga genomes showed, e.g. a unique gene repertoire of the marine strain that could be advantageous in its natural habitat and confirmed the lack of genes for assimilatory nitrite reduction in a strain found to require ammonium for growth. Overall, these novel insights largely broaden our knowledge of Nitrotoga and elucidate the metabolic variability, physiological limits and thus potential ecological roles of this group of nitrite oxidizers.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.15958DOI Listing

Publication Analysis

Top Keywords

physiological limits
8
nitrotoga
5
cold cellular
4
cellular organization
4
physiological
4
organization physiological
4
limits cold-tolerant
4
cold-tolerant nitrite-oxidizing
4
nitrite-oxidizing nitrotoga
4
nitrotoga chemolithoautotrophic
4

Similar Publications

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Player-Level Tackle Training Interventions in Tackle-Collision Sports: A Systematic Scoping Review.

Sports Med Open

September 2025

Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, Cape Town, 7725, South Africa.

Background: In tackle-collision sports, the tackle has the highest incidence, severity, and burden of injury. Head injuries and concussions during the tackle are a major concern within tackle-collision sports. To reduce concussion and head impact risk, evaluating optimal tackle techniques to inform tackle-related prevention strategies has been recommended.

View Article and Find Full Text PDF

Hydraulic constraints to stomatal conductance in flooded trees.

Oecologia

September 2025

School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.

Stomatal closure is a pervasive response among trees exposed to flooded soil. We tested whether this response is caused by reduced hydraulic conductance in the soil-to-leaf hydraulic continuum (k), and particularly by reduced root hydraulic conductance (k), which has been widely hypothesized. We tracked stomatal conductance at the leaf level (g) and canopy scale (G) along with physiological conditions in two temperate tree species, Magnolia grandiflora and Quercus virginiana, that were subjected to flood and control conditions in a greenhouse experiment.

View Article and Find Full Text PDF

Purpose: Adaptive optics scanning light ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates, hindering both therapeutic intervention and physiological study of the retina. To address this issue, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye.

View Article and Find Full Text PDF

Sepsis remains a leading cause of critical illness and mortality worldwide, driven by a dysregulated host response to infection and often complicated by persistent tachycardia and cardiovascular dysfunction. Increasing evidence implicates excessive sympathetic activation as a contributor to sepsis-related hemodynamic instability and myocardial injury, prompting growing interest in the use of β-adrenergic blockade as a therapeutic adjunct. This review synthesizes current data on the safety and efficacy of short-acting, cardioselective β-blockers (BBs), particularly esmolol and landiolol, in septic shock.

View Article and Find Full Text PDF