98%
921
2 minutes
20
Nitrification, a key process in the nitrogen cycle, involves the oxidation of ammonia to nitrite and nitrate by a diverse group of chemolithoautotrophic microorganisms. The order Nitrospirales (referred to in literature as the genus Nitrospira), which includes both nitrite-oxidizing and complete ammonia-oxidizing bacteria, plays a central role in this process. We sequenced the genomes of nine Nitrospirales members, incorporating genomes from previously unsequenced taxonomic Nitrospirales lineages. A comprehensive genomic analysis of these new Nitrospirales was conducted, which included an examination of their habitat distribution, phylogenetic diversity, and functional capabilities. This was complemented by the construction of and comparison to a database of 446 non-redundant, high-quality Nitrospirales genomes. Our phylogenomic analysis uncovered the presence of additional unclassified lineages and provided a comparison between genome-based and 16S rRNA gene-based taxonomies. Whereas some Nitrospirales lineages seem to exhibit habitat preferences, others are found across a wide variety of ecosystems, suggesting a broad niche spectrum. This capacity to adapt to different environmental conditions is also reflected in the high variability and modularity of the respiratory chain and nitrogen assimilation mechanisms. Additionally, we found evidence of quorum sensing systems in species beyond lineage II, implying a broader ecological role for this communication mechanism within the Nitrospirales. Finally, we identified a set of conserved genes unique to nitrite oxidoreductase-containing Nitrospirales, providing insights into the emergence of this functional group. In conclusion, our study emphasizes the adaptability of the various nitrifying classes of the order Nitrospirales to diverse environments and reveals the presence of new taxonomic lineages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342949 | PMC |
http://dx.doi.org/10.1093/ismejo/wraf151 | DOI Listing |
ISME J
January 2025
Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
Nitrification, a key process in the nitrogen cycle, involves the oxidation of ammonia to nitrite and nitrate by a diverse group of chemolithoautotrophic microorganisms. The order Nitrospirales (referred to in literature as the genus Nitrospira), which includes both nitrite-oxidizing and complete ammonia-oxidizing bacteria, plays a central role in this process. We sequenced the genomes of nine Nitrospirales members, incorporating genomes from previously unsequenced taxonomic Nitrospirales lineages.
View Article and Find Full Text PDFPLoS One
May 2025
Council for Scientific and Industrial Research, Building Road and Research Institute, Ghana.
Modern sustainable agriculture often relies on pesticide application, which may unintentionally affect non-target soil microorganisms. This study assessed the effects of commonly used pesticides in cabbage cultivation on bacteria diversity, composition, and abundance in soils from some farming communities in Bosome Freho District, Ghana. The pesticides included a neonicotinoid (acetamiprid), microbial agents (Pieris rapae granulosis virus+ Bacillus thuringiensis), avermectin (emamectin benzoate), and pyrrole (chlorfenapyr).
View Article and Find Full Text PDFMar Genomics
June 2024
School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China. Electronic address:
ISME J
January 2024
Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria.
Ammonia-oxidizing archaea and nitrite-oxidizing bacteria are common members of marine sponge microbiomes. They derive energy for carbon fixation and growth from nitrification-the aerobic oxidation of ammonia to nitrite and further to nitrate-and are proposed to play essential roles in the carbon and nitrogen cycling of sponge holobionts. In this study, we characterize two novel nitrifying symbiont lineages, Candidatus Nitrosokoinonia and Candidatus Nitrosymbion in the marine sponge Coscinoderma matthewsi using a combination of molecular tools, in situ visualization, and physiological rate measurements.
View Article and Find Full Text PDFEnviron Microbiome
April 2024
Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy.
Background: Moonmilk represents complex secondary structures and model systems to investigate the interaction between microorganisms and carbonatic rocks. Grotta Nera is characterized by numerous moonmilk speleothems of exceptional size hanging from the ceiling, reaching over two meters in length. In this work we combined microbiological analyses with analytical pyrolysis and carbon stable isotope data to determine the molecular composition of these complex moonmilk structures as well as the composition of the associated microbiota.
View Article and Find Full Text PDF