Aging (Albany NY)
September 2025
Previously, we reported that KU4 (LKU4) ameliorates diet-induced metabolic disorders by regulating adipose tissue (AT) physiology. Since metabolic disorders and age-related pathological conditions mutually exacerbate each other, this study hypothesizes that LKU4 may protect against adipose senescence during aging. Thus, this study demonstrates that LKU4 administration suppresses age-related metabolic dysfunction and aging phenotypes in AT of 24-month-old mice.
View Article and Find Full Text PDFObjective: Ulva sp., a blooming macroalgae causing the green tide in Korea, has been suggested as a feed ingredient for ruminant livestock. The objective of this study was to investigate the effects of 3% dry matter inclusion of Ulva sp.
View Article and Find Full Text PDFJ Endocrinol
March 2024
We previously reported that Lactobacillus amylovorus KU4 (LKU4) promotes adipocyte browning in mice fed a high-fat diet (HFD mice) in part by remodeling the PPARγ transcription complex. However, the mechanism through which LKU4 enables PPARγ to drive adipocyte browning remains elusive. Here, we report that LKU4 inhibits the expression of PP4C in inguinal white adipose tissue of HFD mice and in insulin-resistant 3T3-L1 adipocytes, which promotes SIRT1-dependent PPARγ deacetylation by activating AMPK, leading to the browning of adipocytes.
View Article and Find Full Text PDFMicrobiol Spectr
January 2024
Abstract: In pathogenic bacteria, the flavohemoglobin Hmp is crucial in metabolizing the cytotoxic levels of nitric oxide (NO) produced in phagocytic cells, contributing to bacterial virulence. Hmp expression is predominantly regulated by the Rrf2 family transcription repressor NsrR in an NO-dependent manner; however, the underlying molecular mechanism in enterobacteria remains poorly understood. In this study, we identified Val43 of Typhimurium NsrR (StNsrR) as a critical amino acid residue for regulating Hmp expression.
View Article and Find Full Text PDFScope: The present study aims to assess the protective effect of Lactobacillus johnsonii JNU3402 (LJ3402) against diet-induced non-alcoholic fatty liver disease (NAFLD) and determine the mechanism underlying its beneficial effect on the liver in mice.
Methods And Results: Seven-week-old male mice are fed a high-fat diet (HFD) with or without oral supplementation of LJ3402 for 14 weeks. In mice fed an HFD, LJ3402 administration alleviates liver steatosis, diet-induced obesity, and insulin resistance with a decreased hepatic expression of sterol-regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), and an increased phosphorylation of SREBP-1c.
In this study, the role of non-viable JNU3402 (NV-LJ3402) in diet-induced obesity was investigated in mice fed a high-fat diet (HFD). To determine whether NV-LJ3402 exhibits a protective effect against diet-induced obesity, 7-week-old male C57BL/6J mice were fed a normal diet, an HFD, or an HFD with NV-LJ3402 for 14 weeks. NV-LJ3402 administration was associated with a significant reduction in body weight gain and in liver, epididymal, and inguinal white adipose tissue (WAT) and brown adipose tissue weight in HFD-fed mice.
View Article and Find Full Text PDFBackground: TR4, an orphan nuclear receptor plays a key role in glucose and lipid metabolism by regulating the expression of genes involved in energy metabolism. We previously reported that overexpression of TR4 in 3T3-L1 adipocytes promotes lipid accumulation in part by facilitating fatty acid uptake and synthesis, indicating that TR4 tightly regulates lipid homeostasis during adipogenesis. Here, we report that β-catenin suppresses TR4 transcriptional activity and that this inhibition is achieved through induction of Slug gene, a well-known transcription repressor in a variety of cells.
View Article and Find Full Text PDFBrowning of white adipose tissue (WAT) is currently considered a potential therapeutic strategy to treat diet-induced obesity. While some probiotics have protective effects against diet-induced obesity, the role of probiotics in adipose browning has not been explored. Here, we show that administration of the probiotic bacterium Lactobacillus amylovorus KU4 (LKU4) to mice fed a high-fat diet (HFD) enhanced mitochondrial levels and function, as well as the thermogenic gene program (increased Ucp1, PPARγ, and PGC-1α expression and decreased RIP140 expression), in subcutaneous inguinal WAT and also increased body temperature.
View Article and Find Full Text PDFObesity is a major threat to public health, and it is strongly associated with insulin resistance and fatty liver disease. Here, we demonstrated that administration of NS1 (LNS1) significantly reduced obesity and hepatic lipid accumulation, with a concomitant improvement in insulin sensitivity, in high-fat diet (HFD)-fed mice. Furthermore, administration of LNS1 inhibited the effect of HFD feeding on the SREBP-1c and PPARα signaling pathways and reduced lipogenesis with an increase in fatty acid oxidation in livers from HFD-fed mice.
View Article and Find Full Text PDFKorean J Food Sci Anim Resour
August 2017
Probiotics have been known to reduce high-fat diet (HFD)-induced metabolic diseases, such as obesity, insulin resistance, and type 2 diabetes. We recently observed that NS1 (LNS1), distinctly suppresses increase of blood glucose levels and insulin resistance in HFD-fed mice. In the present study, we demonstrated that oral administration of LNS1 with HFD feeding to mice significantly reduces hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme in gluconeogenesis which is highly increased by HFD feeding.
View Article and Find Full Text PDFMol Cell Endocrinol
March 2016
In this study, we show that reduction of glucose concentration increases TR4 expression in 3T3-L1 cells via stimulation of the GSK-3β-CREB pathway. While GSK-3β and CREB increased TR4 expression in 3T3-L1 cells, inhibition of CREB expression or activity resulted in loss of GSK-3β-mediated enhancement of TR4 expression. In addition, CREB enhanced murine TR4 promoter activity via direct binding to a cAMP response element located in the promoter, and this CREB effect was further strengthened by GSK-3β.
View Article and Find Full Text PDFWe show that testicular orphan nuclear receptor 4 (TR4) increases the expression of pyruvate carboxylase (PC) gene in 3T3-L1 adipocytes by direct binding to a TR4 responsive element in the murine PC promoter. While TR4 overexpression increased PC activity, oxaloacetate (OAA) and glycerol levels with enhanced incorporation of (14)C from (14)C-pyruvate into fatty acids in 3T3-L1 adipocytes, PC knockdown by short interfering RNA (siRNA) or inhibition of PC activity by phenylacetic acid (PAA) abolished TR4-enhanced fatty acid synthesis. Moreover, TR4 microRNA reduced PC expression with decreased fatty acid synthesis in 3T3-L1 adipocytes, suggesting that TR4-mediated enhancement of fatty acid synthesis in adipocytes requires increased expression of PC gene.
View Article and Find Full Text PDFEndocr Relat Cancer
June 2014
Peroxisome proliferator-activated receptor γ (PPARγ, NR1C3) and testicular receptor 4 nuclear receptor (TR4, NR2C2) are two members of the nuclear receptor (NR) superfamily that can be activated by several similar ligands/activators including polyunsaturated fatty acid metabolites, such as 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, as well as some anti-diabetic drugs such as thiazolidinediones (TZDs). However, the consequences of the transactivation of these ligands/activators via these two NRs are different, with at least three distinct phenotypes. First, activation of PPARγ increases insulin sensitivity yet activation of TR4 decreases insulin sensitivity.
View Article and Find Full Text PDFJ Agric Food Chem
May 2013
Catechin polymers were produced by laccase (12 U/mL) in a mixture of sodium acetate buffer (1% (+)-catechin, 100 mM, pH 5) and methanol (buffer:methanol = 95:5, v/v). The freeze-dried catechin polymers were recovered from the precipitate after dialysis followed by centrifugation. Catechin polymers extracted with 20% ethanol had potent inhibitory activity against α-glucosidase with an IC50 value of 4 μg/mL, and they were present as a mixture of dimers, trimers, and tetramers.
View Article and Find Full Text PDFBiomaterials
December 2011
Biomedical applications of magnetic nanoparticles (MNP), including superparamagnetic nanoparticles, have expanded dramatically in recent years. Systematic and standardized cytotoxicity assessment to ensure the biosafety and biocompatibility of those applications is compulsory. We investigated whether exposure to static magnetic field (SMF) from e.
View Article and Find Full Text PDFFEBS Lett
September 2011
We show that TR4 facilitates lipid accumulation in 3T3-L1 adipocytes via induction of the FATP1 gene. Further study showed that TR4 transactivated FATP1 5' promoter activity via direct binding to the TR4 responsive element located at the FATP1 5' promoter region. Constitutive overexpression of TR4 in 3T3-L1 adipocytes resulted in increased lipid accumulation, accompanied by an increase in fatty acid uptake.
View Article and Find Full Text PDFObjective: TR4 is a nuclear receptor without clear pathophysiological roles. We investigated the roles of hepatic TR4 in the regulation of lipogenesis and insulin sensitivity in vivo and in vitro.
Research Design And Methods: TR4 activity and phosphorylation assays were carried out using hepatocytes and various TR4 wild-type and mutant constructs.
Stearoyl-CoA desaturase (SCD), the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, is highly expressed in prostate cancer although the SCD protein has been known to be rapidly turned over by proteolytic cleavage. The present data demonstrate that SCD can promote proliferation of androgen receptor (AR)-positive LNCaP prostate cancer cells and enhance dihydrotestosterone (DHT)-induced AR transcriptional activity, resulting in increased expression of prostate-specific antigen (PSA) and kallikrein-related peptidase 2 (KLK2). Interestingly, among the previously reported SCD-derived peptides produced by proteolytic cleavage of SCD, a peptide spanning amino acids 130-162 of SCD (SCD-CoRNR) contained the CoRNR box motif (LFLII) and enhanced AR transcriptional activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2009
Testicular orphan nuclear receptor 4 (TR4) is an orphan member of the nuclear receptor superfamily with diverse physiological functions. Using TR4 knockout (TR4(-/-)) mice to study its function in cardiovascular diseases, we found reduced cluster of differentiation (CD)36 expression with reduced foam cell formation in TR4(-/-) mice. Mechanistic dissection suggests that TR4 induces CD36 protein and mRNA expression via a transcriptional regulation.
View Article and Find Full Text PDFThe cholesteryl ester transfer protein (CETP), a key player in cholesterol metabolism, has been shown to promote the transfer of triglycerides from very low density lipoprotein (VLDL) and low density lipoprotein (LDL) to high density lipoprotein (HDL) in exchange for cholesterol ester. Here we demonstrate that farnesoid X receptor alpha (FXRalpha; NR1H4) down-regulates CETP expression in HepG2 cells. A FXRalpha ligand, chenodeoxycholic acid (CDCA), suppressed basal mRNA levels of the CETP gene in HepG2 cells in a dose-dependent manner.
View Article and Find Full Text PDFObjective: Regulation of phosphoenolpyruvate carboxykinase (PEPCK), the key gene in gluconeogenesis, is critical for glucose homeostasis in response to quick nutritional depletion and/or hormonal alteration.
Research Design/methods And Results: Here, we identified the testicular orphan nuclear receptor 4 (TR4) as a key PEPCK regulator modulating PEPCK gene via a transcriptional mechanism. TR4 transactivates the 490-bp PEPCK promoter-containing luciferase reporter gene activity by direct binding to the TR4 responsive element (TR4RE) located at -451 to -439 in the promoter region.
Biochem Biophys Res Commun
September 2007
While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4(-/-)) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4(+/+)) littermates. Substantial increasing TR4(-/-) MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity.
View Article and Find Full Text PDFThe phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays important roles for prostate cancer cell survival, and the androgen receptor (AR) plays essential roles for prostate cancer cell proliferation. How these two signals cooperate to control cell growth and death, however, remains unclear and debated. Here we provide the first linkage by the identification of Forkhead transcription factor FOXO3a, the PI3K/Akt downstream substrate, as a positive regulator for the induction of AR gene expression.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2005
While other plasma lipoproteins are exclusively expressed in liver and intestine, apoliprotein E (apoE) is ubiquitously synthesized in many tissues. To understand the molecular mechanism of non-tissue-specific apoE expression, we tested the testicular orphan receptor 4 (TR4) effect on apoE expression in different cell lines, such as HepG2, COS-1, and H1299 cells. Gel shift assay and 5' promoter activity analyses identified one distinct hormone response element (TR4RE-DR0-apoE at -303 to -292 bp) that binds to TR4 and results in full induction of apoE gene transcription.
View Article and Find Full Text PDF