NS1 Reduces Phosphoenolpyruvate Carboxylase Expression by Regulating HNF4α Transcriptional Activity.

Korean J Food Sci Anim Resour

Department of Biological Sciences, College of Science, Chonnam National University, Gwangju 61186, Korea.

Published: August 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Probiotics have been known to reduce high-fat diet (HFD)-induced metabolic diseases, such as obesity, insulin resistance, and type 2 diabetes. We recently observed that NS1 (LNS1), distinctly suppresses increase of blood glucose levels and insulin resistance in HFD-fed mice. In the present study, we demonstrated that oral administration of LNS1 with HFD feeding to mice significantly reduces hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme in gluconeogenesis which is highly increased by HFD feeding. This suppressive effect of LNS1 on hepatic expression of PEPCK was further confirmed in HepG2 cells by treatment of LNS1 conditioned media (LNS1-CM). LNS1-CM strongly and specifically inhibited HNF4α-induced PEPCK promoter activity in HepG2 cells without change of HNF4α mRNA levels. Together, these data demonstrate that LNS1 suppresses PEPCK expression in the liver by regulating HNF4α transcriptional activity, implicating its role as a preventive or therapeutic approach for metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599573PMC
http://dx.doi.org/10.5851/kosfa.2017.37.4.529DOI Listing

Publication Analysis

Top Keywords

regulating hnf4α
8
hnf4α transcriptional
8
transcriptional activity
8
metabolic diseases
8
insulin resistance
8
hfd feeding
8
hepatic expression
8
hepg2 cells
8
lns1
5
ns1 reduces
4

Similar Publications

Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.

Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.

View Article and Find Full Text PDF

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF

Background: Fermented foods vary significantly by food substrate and regional consumption patterns. Although they are consumed worldwide, their intake and potential health benefits remain understudied. Europe, in particular, lacks specific consumption recommendations for most fermented foods.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

High-fat foods are decomposed into fatty acids during digestion and absorption, primarily occurring in the gastrointestinal tract, and numerous studies have indicated that long-term high-fat diets significantly increase the incidence of intestinal disorders. As a critical intestinal hormone, serotonin (5-hydroxytryptamine, 5-HT) is involved in regulating intestinal peristalsis, secretion, and visceral sensitivity. However, due to the lack of methods capable of reproducing intestinal mechanical activities and in situ monitoring of 5-HT levels, the influence of high-fat diets on intestinal 5-HT release remains unclear.

View Article and Find Full Text PDF