Based on a pangenome graph platform, we simultaneously analyzed the impacts of SNPs and SVs in the population structure and phenotypic formation of global cattle using 2,409 individuals from 82 breeds. We demonstrated that SVs, like SNPs, effectively explain the population structure of global cattle. Genomic regions under strong selection, identified using both SNPs and SVs, consistently revealed footprints associated with human-mediated selection of economic traits in European improved cattle or natural selection of geographical adaptations.
View Article and Find Full Text PDFThe incidence of female infertility is a growing worldwide concern and a leading cause of population decline. Therefore, understanding the pathogenesis of infertility is of utmost importance. DDB1 and CUL4 Associated Factor 13 (DCAF13) is a significant component of the CRL4 E3 ubiquitin ligase complex responsible for recognizing substrates and degrading them after polyubiquitylation.
View Article and Find Full Text PDFTo address the demands for resource utilization of Yellow River sediment and the durability requirements of engineering materials in cold regions, this study systematically investigates the mechanisms affecting the frost resistance of slag-Yellow River sediment geopolymers through the incorporation of mineral admixtures (silica fume and metakaolin) and fibers (steel fiber and PVA fiber). Through 400 freeze-thaw cycles combined with microscopic characterization techniques such as SEM, XRD, and MIP, the results indicate that the group with 20% silica fume content (SF20) exhibited optimal frost resistance, showing a 19.9% increase in compressive strength after 400 freeze-thaw cycles.
View Article and Find Full Text PDFThe dynamic behaviors of metal-organic frameworks (MOFs) continue to expand the accessible architectures and properties within this material class. However, the dynamic behaviors that can be studied in MOFs are limited to the transitions, preserving their high crystallinity. For this reason, their significant structural changes involving coordination bond breakage and rearrangement remain largely underexplored.
View Article and Find Full Text PDFSteel fibers (STs), polyvinyl alcohol fibers (PVAs), and polyethylene fibers (PEs) were selected to systematically investigate the effects of different fiber types and dosages on the workability (slump and spread) and mechanical properties (compressive strength and splitting tensile strength) of slag-Yellow River sand geopolymer eco-cementitious materials. By combining microstructural testing techniques such as thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), the influence mechanisms of fibers on the characteristic products and microstructure of the matrix were thoroughly revealed, and the role of fibers in the strength development of Yellow River sediment-based geopolymers was elucidated. The results show that as the fiber content increases, the workability of the mixture significantly decreases.
View Article and Find Full Text PDFMaterials (Basel)
March 2025
As one of the key components in geopolymer systems, the activator significantly influences the properties of cementitious materials. This study investigates the effects of key activator parameters, specifically alkali equivalent and activator modulus, on the setting time, workability, hydration characteristics, compressive strength, and splitting tensile strength of Yellow River sediment-based slag eco-friendly cementitious materials. Tests such as setting time, slump, flowability, hydration heat, and strength were conducted to evaluate these effects.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
In livestock production, oxidative stress (OS) is ubiquitous, reducing animal productivity and product quality. Hence, investigating the mechanisms of oxidative stress in livestock and inhibiting oxidative stress-induced damage is crucial. Curcumin, a plant-derived bioactive compound, exhibits antioxidant and anti-apoptotic properties.
View Article and Find Full Text PDFThe () gene plays a pivotal role in ovarian development, ovulation, and reproductive traits. There is a lack of studies on its impact on ovarian traits and reproductive traits in cattle. This study aimed to explore gene polymorphisms associations with reproductive traits and investigate the distribution of gene polymorphisms across diverse bovine breeds worldwide.
View Article and Find Full Text PDFBiol Reprod
February 2025
ACS Appl Mater Interfaces
July 2024
Efficient photocatalytic solar CO reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating C═O bonds in CO. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion.
View Article and Find Full Text PDFPreeclampsia (PE) is a complication of pregnancy characterized by the new onset of hypertension after 20 weeks of gestation. The incidence of PE is steadily rising, posing a significant threat to the lives of both the pregnant woman and the fetus. Most studies on PE pathogenesis currently focus on the placenta, but maternal decidualization forms the foundation for placental growth and development.
View Article and Find Full Text PDFThe watershed system has a complex game relationship between the benign operation and coordinated development of various elements of flood-sediment transportation, eco-environment, and socio-economy (FES). With the increasing breadth, depth, and intensity of human activities in watersheds, it is urgent to coordinate the FES. The relationship of water-sediment in the Yellow River Basin (YRB) is complex, with a prominent contradiction in water supply and a fragile ecosystem.
View Article and Find Full Text PDFSudden channel shifting of wandering rivers poses significant challenges for river engineering, flood control strategies, and the security of water resources. This study proposes a novel analytical model to quantitatively assess such channel shifts based on the cusp catastrophe theory. Utilizing bathymetric data from 93 river sections collected biannually between 2015 and 2019, a comprehensive investigation of channel instability in the wandering reach of the Lower Yellow River was conducted.
View Article and Find Full Text PDFConstructing a favorable reaction configuration at the water/catalyst interface is crucial for high-efficiency semiconductor-based water splitting. For a long time, a hydrophilic surface of semiconductor catalysts has been considered necessary for efficient mass transfer and adequate contact with water. In this work, by constructing a superhydrophobic PDMS-Ti/TiO interface (denoted P-TTO) with nanochannels arranged by nonpolar silane chains, we observe overall water splitting efficiencies improved by an order of magnitude under both the white light and simulated AM1.
View Article and Find Full Text PDF() gene is well-known for its function in plateau hypoxia adaptability. It encodes HIF-2α, which involved in the induction of genes regulated by oxygen and then affects multiple physiological processes such as angiogenesis and energy metabolism. All of these indicate it may affect the development of animals.
View Article and Find Full Text PDFNat Commun
November 2022
Graphitic carbon nitride has long been considered incapable of splitting water molecules into hydrogen and oxygen without adding small molecule organics despite the fact that the visible-light response and proper band structure fulfills the proper energy requirements to evolve oxygen. Herein, through in-situ observations of a collective C = O bonding, we identify the long-hidden bottleneck of photocatalytic overall water splitting on a single-phased g-CN catalyst via fluorination. As carbon sites are occupied with surface fluorine atoms, intermediate C=O bonding is vastly minimized on the surface and an order-of-magnitude improved H evolution rate compared to the pristine g-CN catalyst and continuous O evolution is achieved.
View Article and Find Full Text PDFThe proliferation and differentiation of preadipocytes is an important factor determining bovine fat development, which is closely related to the feed conversion ratio, carcass traits, and beef quality. The purpose of this study was to identify the effects of candidate circRNA and miRNA on the proliferation and differentiation of bovine preadipocytes in order to provide basic materials for molecular breeding in cattle. circRNA sequencing was performed on bovine adipocyte samples at different differentiation time points, and a total of 1830 differentially expressed circRNAs were identified.
View Article and Find Full Text PDFThe management of ecological water conveyance (EWC) can allow riparian vegetation communities to survive the threat of degradation in hyperarid inland areas and promote the health of groundwater-recharged riparian ecosystems. However, the ultrashort-term effects of periodic EWC scheduling on riparian vegetation remain unclear. This study explored the spatiotemporal differentiation in species structure (herbs, shrubs, and trees), diversity (measured by the Simpson, Shannon-Wiener, Pielou, and Margalef indices), stability (evaluated via Godron fitting distances and abundance-biomass comparison curves), and integrity (proxied by the vegetation-based index of biotic integrity) of vegetation communities in the downstream Heihe River Basin, China.
View Article and Find Full Text PDFAnimals (Basel)
June 2022
Global classification of bovine genes is important for studies of biology and tissue-specific gene editing. Herein, we classified the tissue-specific expressed genes and uncovered an important variation in the promoter region of an adipose tissue-specific lncRNA gene. Statistical analysis demonstrated that the number of genes specifically expressed in the brain was the highest, while it was lowest in the adipose tissues.
View Article and Find Full Text PDFJ Agric Food Chem
June 2022
Adipogenesis describes the proliferation, differentiation, and apoptosis of mature adipocytes from primary adipocytes and is regulated by post-transcriptional modifications. Circular RNAs (circRNAs) play critical roles in mammalian development and physiology. However, the circRNA-mediated regulation of adipogenesis remains poorly understood.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2022
Developing alternatives to noble metal electrocatalysts for hydrogen production via water splitting is a challenging task. Herein, a novel electrocatalyst with Ni nanoparticles disperesed on N-doped biomass carbon fibers (NBCFs) was prepared through a simple in-situ growth process using Ni-ethanediamine complex (NiC) as the structure-directing agent. The in-situ template effect of the NiC facilitated the formation of Ni-N bonds between the Ni nanoparticles and NBCFs, which not only prevented the aggregation and corrosion of the Ni nanoparticles, but also accelerated the electron transfer in the electrochemical reaction, thus improving the hydrogen evolution reaction (HER) activity of the electrocatalyst.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have identified DENND1A as a potential candidate gene linked to the fertility-related phenotypes in dairy cows. However, to date, no studies have examined the association of the DENND1A insertion/deletions (indels) to bovine fertility on a large scale. Herein, two indel sites, including P4-del-26-bp and P8-ins-15-bp were identified in 1064 Holstein cows.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2020
Although many circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) have been discovered in adipocytes, their precise functions and molecular mechanisms remain poorly understood. Based on existing circRNA and lncRNA sequencing data of bovine adipocytes, we screened for the differential expression of and in preadipocytes and adipocytes and further analyzed their function and regulation during adipogenesis. The overexpression of and together facilitated adipocyte differentiation and suppressed proliferation.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2021
Control and insight into the abundance of inter-shelled channel active sites and charge transport mechanism are the long-term challenges for enhancing photocatalytic activity. Herein, the NiP quantum dots (QDs) are decorated in the multi-shelled CaTiO cube for creating the abundance of inter-shelled channel active sites, which greatly improve the photocatalytic performances for generating H and degrading tetracycline (TC) relative to pure CaTiO and NiP. Moreover, the Z-scheme mechanism and the quantum effect of the NiP in multi-shelled CaTiO cube play a crucial role for enhancing photocatalytic performance.
View Article and Find Full Text PDF