Publications by authors named "Donglin Gan"

Diseases caused by bacterial infections significantly threaten human health. However, the overuse of conventional antibiotics has led to rising drug resistance, necessitating the development of alternative antimicrobial strategies. In this study, we designed and synthesized a dual single-atom FeC nanozyme supported on nitrogen-doped carbon (NC), incorporating Fe single-atom sites, Co single-atom sites, and Fe-Co dual-atom sites.

View Article and Find Full Text PDF

The new generation of smart wound dressings aims to encompass sensory restoration capabilities through multi-stimulation rather than merely focusing on skin rebuilding and repair. Wound dressings integrated with real-time measurement of wound motion can improve healing efficiency considerably by providing crucial guidance during the skin regeneration process. Herein, we report a conductive zwitterionic hydrogel dressing with photothermal and thermoelectric properties prepared using a poly(3,4-ethylenedioxythiophene)-modified polydopamine-functionalized bismuth telluride (PEDOT@PBT) sandwich-like nanosheet-incorporated poly(sulfobetaine methacrylate)/silk fibroin (PEDOT@PBT-PSBMA/SF) semi-interpenetrating polymer network hydrogel, which can accelerate chronic wound healing and monitor motion.

View Article and Find Full Text PDF

Diabetic wounds are highly susceptible to bacterial infections, often resulting in chronic wounds that pose a substantial challenge to clinical treatment. Furthermore, the irregular shapes of these wounds limit the effectiveness of conventional dressings. Therefore, development of a new type of antibacterial dressing that can accommodate various wound shapes is urgently required.

View Article and Find Full Text PDF

Human-machine interface (HMI) electrodes enable interactions between humans and bioelectronic devices by facilitating electrical stimulation and recording neural activity. However, reconciling the soft, hydrated nature of living human tissues with the rigid, dry properties of synthetic electronic systems is inherently challenging. Overcoming these significant differences, which is critical for developing compatible, effective, and stable interfaces, has become a key research area in materials science and technology.

View Article and Find Full Text PDF

Supercapacitors that can function when in direct contact with human tissue are of paramount importance for wearable bioelectronics but face mismatching with biological tissue and its movement. Herein, we developed a zwitterion hydrogel elastomer electrode-based all-hydrogel supercapacitor (AHSC) characterized by good energy storage properties, bioadhesion, body movement-matching mechanical properties, and biocompatibility. These functions were realized by integrating a [2-(methacryloyloxy)ethyl]dimethyl-(3-propylsulfonate)ammonium hydroxide (DMAPS) and hydroxyethyl acrylate (HEA)-copolymerized zwitterion hydrogel electrode (DMAPS-HEA) with redox-active nanofillers.

View Article and Find Full Text PDF

Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.

View Article and Find Full Text PDF
Article Synopsis
  • * Hydrogels are emerging as effective carriers for these molecules, helping to enhance their retention at injury sites, prolong their activity, and reduce side effects.
  • * The review covers recent advancements in bioactive molecule-loaded hydrogels for various bone repair applications, while also discussing strategies for improving release profiles and addressing challenges in this area.
View Article and Find Full Text PDF

Diabetic skin wound healing is compromised by bacterial infections, oxidative stress, and vascular disruption, leading to delayed recovery and potential complications. This study developed an antibacterial, antioxidant, and adhesive hydrogel dressing that promotes rapid bacterial-infected diabetic wound healing using the biological macromolecule of polydopamine (PDA). This hydrogel comprised PDA-armored zeolitic imidazolate framework-8 nanoparticles (PDA@ZIF-8 NPs) combined with a second armor of zwitterionic polymer network (poly(acrylamide-co-sulfobetaine methacrylate); PAS), realizing low concentration Zn release, good adhesion (14.

View Article and Find Full Text PDF

Stretchable and conductive hydrogels are rapidly emerging as new generation candidates for wearable devices. However, the poor electroactivity and bioadhesiveness of traditional conductive hydrogels has limited their applications. Herein, a mussel-inspired strategy is proposed to prepare a specific core-shell redox-active system, consisting of a polydopamine (PDA) modified zeolitic imidazolate framework 71 (ZIF-71) core, and a poly 3,4-ethylenedioxythiopene (PEDOT) shell.

View Article and Find Full Text PDF

Bacterial infection and oxidative stress hinder clinical wound healing. Therefore, wound dressings with antibacterial and antioxidative properties are urgently needed. In this study, a type of quaternized lignin (QL) functionalized poly(hexamethylene biguanide) hydrochloride (PHMB) complex incorporated polyacrylamide (QL-PHMB-PAM) hydrogel was developed as a multifunctional dressing material for the promotion of infected wound repair.

View Article and Find Full Text PDF

Biofilm formation on biomedical devices is a major cause of device-associated infection. Traditional antibiotic treatment for biofilm-associated infection increases the risk of multidrug resistance. Thus, there is an urgent need to develop antibiotic-free strategies to prevent biofilm formation on biomedical devices.

View Article and Find Full Text PDF

Inhibition of biofilm formation and induction of the re-mineralization of damaged dental tissues are two major strategies to combat dental hypersensitivity (DH). However, single component synthetic materials normally cannot fulfil these two functions during the repairing of damaged dental tissues. Here, we report zwitterionic phosphorylcholine based polymers to be a new type of dual functional coating for the repairing of DH.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) is a promising approach to combat the increasing global multi-drug resistance crisis. However, the very short half-life of O and the inevitable photobleaching of photosensitizer (PS) are the inherent drawbacks that largely compromise its therapeutic efficiency. Here, we report a ROS conversion strategy that simultaneously addresses these issues.

View Article and Find Full Text PDF

Bacterial-associated infection, blood coagulation, and tissue adhesion are severe issues associated with biomedical implants and devices in clinic applications. Here, we report a general strategy to simultaneously tackle these issues on polyurethane (PU)-based substrates. Taking advantage of reversible addition-fragmentation chain transfer (RAFT) polymerization, well-defined zwitterionic/active ester block polymers (pSBMA--pNHSMA) with an identical pNHSMA segment (polymerization degree of 15) but varied zwitterionic pSBMA segments (polymerization degrees of 40 and 100) were precisely prepared.

View Article and Find Full Text PDF

Background: Injury to articular cartilage cause certain degree of disability due to poor self-repair ability of cartilage tissue. To promote cartilage regeneration, it is essential to develop a scaffold that properly mimics the native cartilage extracellular matrix (ECM) in the aspect of compositions and functions.

Methods: A mussel-inspired strategy was developed to construct an ECM-mimicking hydrogel scaffold by incorporating polydopamine-modified hyaluronic acid (PDA/HA) complex into a dual-crosslinked collagen (Col) matrix for growth factor-free cartilage regeneration.

View Article and Find Full Text PDF

Osteoconductive and osteoinductive scaffolds are highly desirable for functional restoration of large bone defects. Here, we report an mineralized poly(lactic--glycolic acid)/poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide hydrogel (PLGA/PSBMA) scaffold as a novel high-efficiency carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2) for bone tissue regeneration. By virtue of the oppositely charged structure, the zwitterionic PSBMA component is able to template well-integrated dense mineralization of calcium phosphate throughout the PLGA/PSBMA scaffold.

View Article and Find Full Text PDF

Designing a coating material with efficient bactericidal property to cope with bacterial associated infections is highly desirable for metallic implants and devices. Here, we report phosphonate/quaternary ammonium copolymers, (DEMMP--TMAEMA), as the new type of metal anchorable high-efficiency antibacterial coating. Seven (DEMMP--TMAEMA) polymers with varied cationic components were precisely prepared random radical polymerization.

View Article and Find Full Text PDF
Article Synopsis
  • Conductive polymers (CPs) are typically insoluble, and the development of hydrophilic CPs is crucial for expanding their applications.
  • A novel strategy inspired by mussels was introduced to create hydrophilic CP nanoparticles (CP NPs) that possess redox activity and biocompatibility, which can be applied to multiple CP types like polyaniline and polypyrrole.
  • The resulting CP/LS nanoparticles are effective in producing conductive hydrogels with strong adhesion, good conductivity, and potential uses in tissue regeneration and bioelectronics due to their uniform distribution and dynamic redox properties.
View Article and Find Full Text PDF

Bacteria associated infection is a critical challenge for metallic implants and devices in biomedical applications. Here, we report phosphonate/zwitterionic/quaternary amine terpolymers as a new type of antifouling and bactericidal coating for metallic substrates. Through reversible-addition fragmentation chain transfer polymerization (RAFT) and quaternization, well-controlled phosphonate/zwitterionic/cationic terpolymers with identical phosphonate segments (repeat units of 15) and varied zwitterionic and cationic components (nSBMA : nTMAEMA = 64 : 0, 54 : 18, 18 : 32, 9 : 52, and 0 : 70) were precisely prepared.

View Article and Find Full Text PDF

Bacterial associated infection is a remaining urgent challenge in clinic application of metallic implants and devices. Here, we developed a new strategy to combat the bacterial associated infection of titanium alloy (TC4). Novel phosphonate/active ester block polymers (pDEMMP-b-pNHSMA) with identical phosphonate segments (DP = 29) as the metal anchorable ligand but varied active ester segments (DPs = 7, 29, and 64) as the conjugation site for poly(hexamethylene biguanide) (PHMB) were precisely prepared.

View Article and Find Full Text PDF

Nanoscale composites for high-performance electrodes employed in flexible, all-solid-state supercapacitors are being developed. A series of binder-free composites, each consisting of a transition bimetal oxide, a metal oxide, and a metal nitride grown on N-doped reduced graphene oxide (rGO)-wrapped nickel foam are obtained by using a universal strategy. Three different transition metals, Co, Mo, and Fe, are separately compounded with nickel ions, which originate from the nickel foam, to form three composites, NiCoO @Co O @Co N, NiMoO @MoO @Mo N, and NiFe O @Fe O @Fe N, respectively.

View Article and Find Full Text PDF

Gelatin methacryloyl (GelMA) hydrogels are widely used for tissue regeneration. Nonetheless, a pure GelMA hydrogel cannot efficiently serve for cartilage regeneration because of weak mechanical properties and brittleness. In this study, we established a mussel-inspired strategy for tuning the mechanical properties of GelMA hydrogels by intercalating oligomers of dopamine methacrylate (ODMA) into the chain of GelMA.

View Article and Find Full Text PDF

With the rapid development of minimally invasive techniques in orthopedics, minimally invasive surgery combined with injection of bone repair materials has attracted increasing attention for the treatment of bone defects. Inspired by material in mussels, we decorated nanohydroxyapatite (nHA) with dopamine (DA) to form polydopamine (PDA)-decorated nHA (PHA). Then, we introduced PHA into a Schiff base reaction of oxidized sodium alginate (OSA) and gelatin (Gel) to prepare an injectable bone repair hydrogel under mild conditions.

View Article and Find Full Text PDF

Anisotropic hydrogels with a hierarchical structure can mimic biological tissues, such as neurons or muscles that show directional functions, which are important factors for signal transduction and cell guidance. Here, we report a mussel-inspired approach to fabricate an anisotropic hydrogel based on a conductive ferrofluid. First, polydopamine (PDA) was used to mediate the formation of PDA-chelated carbon nanotube-FeO (PFeCNT) nanohybrids and also used as a dispersion medium to stabilize the nanohybrids to form a conductive ferrofluid.

View Article and Find Full Text PDF