Chin J Nat Med
December 2024
The treatment of tumors continues to be significantly challenging. The presence of multiple modalities, including surgery, radiation, chemotherapy and immunotherapy, the therapeutic outcomes remain limited and are often associated with adverse effects and inconsistent efficacy across cancer types. Recent studies have highlighted the potential of active components from traditional Chinese medicine (TCM) for their anti-cancer properties, which are attributable to multi-targeted mechanisms and broad pharmacological actions.
View Article and Find Full Text PDFAutophagic dysfunction-induced deterioration of the retinal microenvironment drives the progression of wet age-related macular degeneration (wAMD). The efficacy of single-target anti-VEGF antibodies in treating wAMD has long been suboptimal due to the intricate interplay between autophagy dysfunction, oxidative stress, and angiogenesis. Here, we introduce an intravitreal hydrogel depot, named Rab&Rapa-M@G, consisting of rapamycin-loaded microemulsion (Rapa-M, an mTOR inhibitor), ranibizumab (anti-VEGF antibody), and a thermosensitive hydrogel matrix.
View Article and Find Full Text PDFIron-based nanocarriers have demonstrated potential in redirecting tumor associated macrophages (TAMs) polarization towards the M1 phenotype, critical for activating the tumor microenvironment (TME) in triple negative breast cancer (TNBC). However, their real-world effectiveness is curtailed by insufficient Fe exposure and the absence of suitable synergists in tumors. We introduce an air bag-embedded iron-based MIL-101 metal-organic frameworks (MOF) for igniting the TME in TNBC through bubble-driven tumoral codelivery of Fe and lentinan.
View Article and Find Full Text PDFMicrosatellite-stable colorectal cancer (MSS-CRC) exhibits resistance to programmed cell death protein-1 (PD-1) therapy. Improving the infiltration and tumor recognition of cytotoxic T-lymphocytes (CTLs) is a promising strategy, but it encounters huge challenges from drug delivery and mechanisms aspects. Here, a zeolitic imidazolate framework (ZIF) coated with apoptotic body membranes derived from MSS-CRC cells is engineered for the co-delivery of ginsenoside Rg1 (Rg1) and atractylenolide-I (Att) to MSS-CRC, named as Ab@Rg1/Att-ZIF.
View Article and Find Full Text PDFThe insufficient abundance and weak activity of tumour-infiltrating lymphocytes (TILs) are two important reasons for the poor efficacy of PD-1 inhibitors in hepatocellular carcinoma (HCC) treatment. The combined administration of tanshinone II (TSA) and astragaloside IV (As) can up-regulate the abundance and activity of TILs by normalising tumour blood vessels and reducing the levels of immunosuppressive factors respectively. For enhancing the efficacy of PD-1 antibody, a magnetic metal-organic framework (MOF) with a homologous tumour cell membrane (Hm) coating (Hm@TSA/As-MOF) is established to co-deliver TSA&As into the HCC microenvironment.
View Article and Find Full Text PDFSustainable retinal codelivery poses significant challenges technically, although it is imperative for synergistic treatment of wet age-related macular degeneration (wAMD). Here, a microemulsion-doped hydrogel (Bor/PT-M@TRG) is engineered as an intravitreal depot composing of temperature-responsive hydrogel (TRG) and borneol-decorated paeoniflorin (PF) & tetramethylpyrazine (TMP)-coloaded microemulsions (Bor/PT-M). Bor/PT-M@TRG, functioning as the "ammunition depot", resides in the vitreous and continuously releases Bor/PT-M as the therapeutic "bullet", enabling deep penetration into the retina for 21 days.
View Article and Find Full Text PDFProgrammed cell death protein 1 (PD-1) inhibitors are the most common immune-checkpoint inhibitors and considered promising drugs for hepatocellular carcinoma (HCC). However, in clinical settings, they have a low objective response rate (15%-20%) for patients with HCC; this is because of the insufficient level and activity of tumor-infiltrating T lymphocytes (TILs). The combined administration of oxymatrine (Om) and astragaloside IV (As) can increase the levels of TILs by inhibiting the activation of cancer-associated fibroblasts (CAFs) and improve the activity of TILs by enhancing their mitochondrial function.
View Article and Find Full Text PDFM1 polarization of tumor-associated macrophages (TAMs) is a promising approach to breaking through therapeutic barriers imposed by the immunosuppressive tumor microenvironment (TME). As a clinically-used immunopotentiator for cancer patients after chemotherapies; however, the immunomodulatory mechanism and potential of polyporus polysaccharide (PPS) remains unclear. Here, we present mannose-decorated PPS-loaded superparamagnetic iron-based nanocomposites (Man/PPS-SPIONs) for synergistic M1 polarization of TAMs and consequent combinational anti-breast cancer therapy.
View Article and Find Full Text PDFBackground: Berberine (BR) shows promise as a candidate for treating irritable bowel syndrome with diarrhea (IBS-D). However, the undesired physicochemical properties and poor oral absorption limit its clinical translation. A ketogenic diet (KD) can induce intestinal overexpression of cannabidiol (CB) receptors, which may offer a potential target for IBS-D-specific delivery of BR.
View Article and Find Full Text PDFBackground: Conventional dissolving microneedles (DMNs) face significant challenges in anti-melanoma therapy due to the lack of active thrust to achieve efficient transdermal drug delivery and intra-tumoral penetration.
Methods: In this study, the effervescent cannabidiol solid dispersion-doped dissolving microneedles (Ef/CBD-SD@DMNs) composed of the combined effervescent components (CaCO & NaHCO) and CBD-based solid dispersion (CBD-SD) were facilely fabricated by the "one-step micro-molding" method for boosted transdermal and tumoral delivery of cannabidiol (CBD).
Results: Upon pressing into the skin, Ef/CBD-SD@DMNs rapidly produce CO bubbles through proton elimination, significantly enhancing the skin permeation and tumoral penetration of CBD.
Sustained retina drug delivery and rational drug combination are considered essential for enhancing the efficacy of therapy for wet age-related macular degeneration (wAMD) due to the conservative structure of the posterior ocular segment and the multi-factorial pathological mechanism. Designing a drug co-delivery system that can simultaneously achieve deep penetration and long-lasting retention in the vitreous is highly desired, yet remains a huge challenge. In this study, we fabricated Bor/RB-M@TRG as an intravitreal-injectable hydrogel depot for deep penetration into the posterior ocular segment and long-lasting distribution in the retinal pigment epithelium (RPE) layer.
View Article and Find Full Text PDFCombinational icaritin (IC) and coix seed oil (CSO) holds promising potential in the treatment of hepatocellular carcinoma. However, traditional cocktail therapy is facing difficulties to optimize the synergistic antitumor efficacy due to the asynchronous pharmacokinetics. Therefore, we developed an icaritin-loaded microemulsion based on coix seed oil (IC-MEs) for improved pharmacokinetics and enhanced antitumor efficacy.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) deteriorate tumor microenvironment (TME) and hinder intra-tumoral drug delivery. Direct depleting CAFs exists unpredictable risks of tumor metastasis. Epithelial-mesenchymal transition (EMT) is a critical process of CAFs converted from hepatic stellate cells during hepatocellular tumorigenesis; however, until now the feasibility of reversing EMT to battle hepatocellular carcinoma has not been comprehensively explored.
View Article and Find Full Text PDFMyocardial ischaemia-reperfusion injury (MI/RI) induces injury against cardiomyocytes and triggers myocardial infarction. Previously, we demonstrated that tetramethylprazine (TMP) was a promising therapeutic agent for attenuating MI/RI. However, poor absorption and low homing efficiency are two main obstacles to the further application of TMP.
View Article and Find Full Text PDFAmphiphilic chitosan derivatives have attracted wide attention as drug carriers due to their physicochemical properties. However, obtaining a desired amphiphilic chitosan derivative by tuning the various functional groups was complex and time-consuming. Therefore, a facile and common synthesis strategy would be promising.
View Article and Find Full Text PDFLung metastasis is a fatal and late-stage event for many solid tumors. Multiple lines of evidence have demonstrated that diallyl trisulfide (DATS), an active ingredient of garlic, possesses striking antimetastatic effects. However, the lack of highly efficient organ-compatible carriers restricts its application.
View Article and Find Full Text PDFThe accumulation and penetration of antitumor drugs in tumor tissues are directly related to their antitumor effects. The particle size of the nanodrug delivery system is one of the most important factors for the accumulation and penetration of antitumor drugs within tumor tissues. Generally, nanodelivery systems of intermediate size (100-120 nm) are capable of efficient accumulation owing to prolonged circulation and enhanced permeability and retention (EPR) effect; however, smaller ones (20-40 nm) are effective for deep penetration within tumor tissue.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
A fever-mimic response capable of recruiting reprogrammed macrophages holds great potential in the engineering of the tumor microenvironment (TME). Low-temperature photothermal therapy (LT-PTT) can maintain tumors at a fever-like temperature (<45 °C) temporarily; however, it still faces several challenges in efficient regulation of TME because of reciprocal cross-talk between the bypass pathways. Here, we report a synergistic engineering of TME through an enhanced activation of a fever-mimic response based on both LT-PTT and tumor vascular normalization.
View Article and Find Full Text PDFIncreasing evidence indicates that the tumor microenvironment (TME) imposes various obstacles in response to chemotherapies. Sodium tanshinone IIA sulfonate (STS) has a validated ability to repair the unfavorable TME, providing a suitable environment for celastrol-based chemotherapy. However, remodeling TME still possesses enormous challenges for STS due to the difficulty in a controlled release at tumor sites.
View Article and Find Full Text PDFControlled release and tumor-selective distribution are highly desirable for anticancer nanomedicines. Here, we design and synthesize an anisamide-conjugated N-octyl-N,O-maleoyl-O-phosphoryl chitosan (a-OMPC) which can form amphiphilic micelles featuring pH-responsive release and high affinity to sigma-1 receptor-overexpressed tumors for paclitaxel (PTX) delivery. Thereinto, maleoyl and phosphoryl groups cooperatively contribute to pH-responsive drug release due to a conversion from hydrophile to hydrophobe in the acidic microenvironment of endo/lysosomes.
View Article and Find Full Text PDFTumor-targeted ligand modification and nanosized coloaded drug delivery systems are promising for cancer therapy. In this study, we showed that coix seed oil and tripterine coloaded microemulsions with a transferrin modification (Tf-CT-MEs) could improve the treatment of cervical cancer. Tf-CT-MEs exhibited good stability in serum and a notably synergistic antiproliferation effect.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is known as a major microvascular complication leading cause of end-stage renal disease, it generally followed by the process of podocyte fragmentation and detachment. Transforming growth factor β1 (TGF-β1) signaling pathway plays a pivotal role in the initiation and progression of DN. In present study, we aim to investigate the effect of lycopus extracts on podocytes injury and TGF-β signaling.
View Article and Find Full Text PDFHerein, we describe a novel amphipathic chitosan derivative (N-octyl-N'-phthalyl-O-phosphoryl chitosan, abbreviated as OPPC) as an effective oral delivery platform for P-gp substrates, especially paclitaxel (PTX). OPPC could readily self-assemble into micelles, solubilize and encapsulate PTX into the hydrophobic inner core of OPPC with superior loading capacity to chitosan. PTX/OPPC micelles possessed improved intestinal epithelial permeability and oral bioavailability of PTX evaluated by in situ perfusion and pharmacokinetic studies.
View Article and Find Full Text PDF