Inspired by the natural defense strategies of insect wings and plant leaves, nanostructured surfaces have emerged as a promising tool in various fields, including engineering, biomedical sciences, and materials science, to combat bacterial contamination and disrupt biofilm formation. However, the development of effective antimicrobial surfaces against fungal and viral pathogens presents distinct challenges, necessitating tailored approaches. Here, we aimed to review the recent advancements of the use of nanostructured surfaces to combat microbial contamination, particularly focusing on their mechano-bactericidal and antifungal properties, as well as their potential in mitigating viral transmission.
View Article and Find Full Text PDFThe biological effects of electromagnetic field (EMF) irradiation in the terahertz (THz) range remain ambiguous, despite numerous studies that have been conducted. In this paper, the metabolic response of K 12 to EMF irradiation was examined using a 1.0 W m incident synchrotron source (SS) in the range of 0.
View Article and Find Full Text PDFWhile there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate.
View Article and Find Full Text PDFWe present a novel technique of genetic transformation of bacterial cells mediated by high frequency electromagnetic energy (HF EME). Plasmid DNA, pGLO (5.4 kb), was successfully transformed into JM109 cells after exposure to 18 GHz irradiation at a power density between 5.
View Article and Find Full Text PDFThis paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.
View Article and Find Full Text PDFDespite recent advances in the development of orthopedic devices, implant-related failures that occur as a result of poor osseointegration and nosocomial infection are frequent. In this study, we developed a multiscale titanium (Ti) surface topography that promotes both osteogenic and mechano-bactericidal activity using a simple two-step fabrication approach. The response of MG-63 osteoblast-like cells and antibacterial activity toward and bacteria was compared for two distinct micronanoarchitectures of differing surface roughness created by acid etching, using either hydrochloric acid (HCl) or sulfuric acid (HSO), followed by hydrothermal treatment, henceforth referred to as either MN-HCl or MN-HSO.
View Article and Find Full Text PDFThe mechano-bactericidal action of nanostructured surfaces is well-documented; however, synthetic nanostructured surfaces have not yet been explored for their antifungal properties toward filamentous fungal species. In this study, we developed a biomimetic nanostructured surface inspired by dragonfly wings. A high-aspect-ratio nanopillar topography was created on silicon (nano-Si) surfaces using inductively coupled plasma reactive ion etching (ICP RIE).
View Article and Find Full Text PDFExposure to high-frequency (HF) electromagnetic fields (EMFs) at 18 GHz was previously found to induce reversible cell permeabilization in eukaryotic cells; however, the fate of internalized foreign objects inside the cell remains unclear. Here, silica core-shell gold nanospheres (Au NS) of 20 ± 5 nm diameter were used to study the localization of Au NS in pheochromocytoma (PC 12) cells after exposure to HF EMFs at 18 GHz. Internalization of Au NS was confirmed using fluorescence microscopy and transmission electron microscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2022
Ultrasmall metal nanoclusters (NCs) are employed in an array of diagnostic and therapeutic applications due to their tunable photoluminescence, high biocompatibility, polyvalent effect, ease of modification, and photothermal stability. However, gold nanoclusters' (AuNCs') intrinsically antimicrobial properties remain poorly explored and are not well understood. Here, we share an insight into the antimicrobial action of atomically precise AuNCs based on their ability to passively translocate across the bacterial membrane.
View Article and Find Full Text PDFAtomic force microscopy (AFM) was used to investigate the morphology and rigidity of the opportunistic pathogenic yeast, ATCC 10231, during its attachment to surfaces of three levels of nanoscale surface roughness. Non-polished titanium (npTi), polished titanium (pTi), and glass with respective average surface roughness () values of 389 nm, 14 nm, and 2 nm, kurtosis () values of 4, 16, and 4, and skewness () values of 1, 4, and 1 were used as representative examples of each type of nanoarchitecture. Thus, npTi and glass surfaces exhibited similar and values but highly disparate .
View Article and Find Full Text PDFMechano-bactericidal surfaces deliver lethal effects to contacting bacteria. Until now, cell death has been attributed to the mechanical stress imparted to the bacterial cell envelope by the surface nanostructures; however, the process of bacterial death encountering nanostructured surfaces has not been fully illuminated. Here, we perform an in-depth investigation of the mechano-bactericidal action of black silicon (bSi) surfaces toward Gram-negative bacteria .
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2022
The ability to modulate, tune, and control fluorescence colour has attracted much attention in photonics-related research fields. Thus far, it has been impossible to achieve fluorescence colour control (FCC) for material with a fixed structure, size, surrounding medium, and concentration. Here, we propose a novel approach to FCC using optical tweezers.
View Article and Find Full Text PDFPolymer matrix composite materials have the capacity to aid the indirect transmission of viral diseases. Published research shows that respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19), can attach to polymer substrata as a result of being contacted by airborne droplets resulting from infected people sneezing or coughing in close proximity. Polymer matrix composites are used to produce a wide range of products that are "high-touch" surfaces, such as sporting goods, laptop computers and household fittings, and these surfaces can be readily contaminated by pathogens.
View Article and Find Full Text PDFQuantitative phase imaging (QPI) techniques are widely used for the label-free examining of transparent biological samples. QPI techniques can be broadly classified into interference-based and interferenceless methods. The interferometric methods which record the complex amplitude are usually bulky with many optical components and use coherent illumination.
View Article and Find Full Text PDFHypothesis: The ability exhibited by insect wings to resist microbial infestation is a unique feature developed over 400 million years of evolution in response to lifestyle and environmental pressures. The self-cleaning and antimicrobial properties of insect wings may be attributed to the unique combination of nanoscale structures found on the wing surface.
Experiments: In this study, we characterised the wetting characteristics of superhydrophobic damselfly Calopteryx haemorrhoidalis wings.
Optical tweezers enable the manipulation of micro- and nanodielectric particles through entrapment using a tightly focused laser. Generally, optical trapping of submicron size particles requires high-intensity light in the order of MW/cm. Here, we demonstrate a technique of stable optical trapping of submicron polymeric beads on nanostructured titanium surfaces (black-Ti) without the use of lasers.
View Article and Find Full Text PDFThe microbial contamination of surfaces presents a significant challenge due to the adverse effects associated with biofilm formation, particularly on implantable devices. Here, the attachment and biofilm formation of the opportunistic human pathogen, ATCC 10231, were studied on surfaces with decreasing magnitudes of nanoscale roughness. The nanoscale surface roughness of nonpolished titanium, polished titanium, and glass was characterized according to average surface roughness, skewness, and kurtosis.
View Article and Find Full Text PDFThree-dimensional porous nanostructures made of noble metals represent novel class of nanomaterials promising for nonlinear nanooptics and sensors. Such nanostructures are typically fabricated using either reproducible yet time-consuming and costly multi-step lithography protocols or less reproducible chemical synthesis that involve liquid processing with toxic compounds. Here, we combined scalable nanosecond-laser ablation with advanced engineering of the chemical composition of thin substrate-supported Au films to produce nanobumps containing multiple nanopores inside.
View Article and Find Full Text PDFIt is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP-membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing.
View Article and Find Full Text PDFAntibiotic resistance is a global human health threat, causing routine treatments of bacterial infections to become increasingly difficult. The problem is exacerbated by biofilm formation by bacterial pathogens on the surfaces of indwelling medical and dental devices that facilitate high levels of tolerance to antibiotics. The development of new antibacterial nanostructured surfaces shows excellent prospects for application in medicine as next-generation biomaterials.
View Article and Find Full Text PDFMicromachines (Basel)
July 2020
The thermal properties of novel nanomaterials play a significant role in determining the performance of the material in technological applications. Herein, direct measurement of the temperature diffusivity of nanocellulose-doped starch-polyurethane nanocomposite films was carried out by the micro-contact method. Polymer films containing up to 2 wt%.
View Article and Find Full Text PDFThe self-organised conical needles produced by plasma etching of silicon (Si), known as black silicon (b-Si), create a form-birefringent surface texture when etching of Si orientated at angles of θ < 50 - 70 (angle between the Si surface and vertical plasma E-field). The height of the needles in the form-birefringent region following 15 min etching was d ∼ 200 nm and had a 100 μm width of the optical retardance/birefringence, characterised using polariscopy. The height of the b-Si needles corresponds closely to the skin-depth of Si ∼λ/4 for the visible spectral range.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays.
View Article and Find Full Text PDFThe fabrication and characterization of photoanodes based on black-Si (b-Si) are presented using a photoelectrochemical cell in NaOH solution. B-Si was fabricated by maskless dry plasma etching and was conformally coated by tens-of-nm of TiO using atomic layer deposition (ALD) with a top layer of CoO x cocatalyst deposited by pulsed laser deposition (PLD). Low reflectivity R < 5 % of b-Si over the entire visible and near-IR ( λ < 2 μ m) spectral range was favorable for the better absorption of light, while an increased surface area facilitated larger current densities.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2020
Hypothesis: Titanium and titanium alloys are often the most popular choice of material for the manufacture of medical implants; however, they remain susceptible to the risk of device-related infection caused by the presence of pathogenic bacteria. Hydrothermal etching of titanium surfaces, to produce random nanosheet topologies, has shown remarkable ability to inactivate pathogenic bacteria via a physical mechanism. We expect that systematic tuning of the nanosheet morphology by controlling fabrication parameters, such as etching time, will allow for optimisation of the surface pattern for superior antibacterial efficacy.
View Article and Find Full Text PDF