Small cell lung cancer (SCLC) is a highly aggressive malignancy that lacks effective targeted therapies, in part due to frequent loss-of-function mutations in tumor suppressors and the absence of recurrent oncogenic drivers. Approximately 15% of SCLCs harbor inactivating mutations in NOTCH1 or NOTCH2, and most neuroendocrine-high SCLCs exhibit low NOTCH activity. Using CRISPR-Cas9 screening in primary cell lines derived from NOTCH1/2-isogenic SCLC genetically engineered mouse models, we identified TRIM28 as a synthetic lethal dependency in NOTCH2-inactivated SCLCs.
View Article and Find Full Text PDFEGFR tyrosine kinase inhibitors (TKIs) have dramatically improved outcomes for EGFR-mutated non-small cell lung cancer (NSCLC) patients, but relapse frequently occurs due to drug tolerant persister (DTP) cells that can evolve and develop diverse mechanisms of drug resistance. In samples from patients with EGFR-mutated NSCLC treated with EGFR-TKIs in the neoadjuvant setting, we observed enriched expression of the cell surface protein TROP2, a target of clinically active antibody drug conjugates (ADCs). We confirmed these findings across multiple EGFR-mutated NSCLC cell line and patient-derived xenograft models treated with osimertinib in vivo.
View Article and Find Full Text PDFPurpose: NUT carcinoma (NC) is an underdiagnosed, poorly differentiated squamous cell cancer with a median survival of 6.7 months. Defined by NUTM1 fusions, NC enhances oncogene transcription, including MYC.
View Article and Find Full Text PDFStimulator of interferon genes (STING) has emerged as a critical cancer immunotherapy target. However, no STING agonist has advanced beyond phase I/II clinical trials, as obstacles center around applying STING agonism to the appropriate clinical context, retaining it in the tumor microenvironment (TME), and limiting its T cell toxicity. Using triple-negative breast cancer (TNBC), we identify defective STING turnover as a cancer state promoting hypersensitivity to STING agonism.
View Article and Find Full Text PDFDiacylglycerol kinase α (DGKα) and DGKζ are lipid kinases that negatively regulate T-cell signaling through diacylglycerol metabolism, making them attractive targets for next-generation immunotherapy. In this study, we report the discovery and preclinical characterization of the clinical-stage DGKα and DGKζ lipid kinase inhibitor, BMS-986408. BMS-986408 binds to the accessory subdomain of the catalytic domain and inhibits DGKα/ζ through a mechanism of action that includes competitive inhibition for the diacylglycerol substrate, subcellular translocation to the plasma membrane, and proteosome-dependent degradation.
View Article and Find Full Text PDFLung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis.
View Article and Find Full Text PDFViral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway.
View Article and Find Full Text PDFPurpose: Temozolomide plus PARP inhibition has shown promise in small cell lung cancer (SCLC). We previously reported outcomes from the first 50 patients (cohort 1) of a phase I/II trial of olaparib/temozolomide in recurrent SCLC. In this study, we report a final analysis of this trial, including a second cohort with an alternate dosing strategy and an exploratory analysis of central nervous system (CNS)-specific outcomes.
View Article and Find Full Text PDFImportance: Aggressive thyroid carcinoma, including radioiodine refractory (RAIR) differentiated thyroid carcinoma (DTC), medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC), are associated with significant morbidity and mortality and have limited therapeutic options. Distinct immune profiles have been identified in thyroid cancer subtypes suggesting they may be susceptible to immune checkpoint inhibition.
Objective: To evaluate the efficacy of anti-programmed cell death 1 nivolumab and anti-cytotoxic lymphocyte-associated protein 4 ipilimumab in patients with aggressive thyroid carcinoma.
Rett syndrome (RTT) is a neurodevelopmental disorder that is caused by mutations in melty-CpG binding protein 2 (MeCP2). MeCP2 is a non-cell type-specific DNA binding protein, and its mutation influences not only neural cells but also non-neural cells in the brain, including vasculature associated with endothelial cells. Vascular integrity is crucial for maintaining brain homeostasis, and its alteration may be linked to the pathology of neurodegenerative disease, but a non-neurogenic effect, especially the relationship between vascular alternation and Rett syndrome pathogenesis, has not been shown.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and has the highest rate of recurrence. The predominant standard of care for advanced TNBC is systemic chemotherapy with or without immunotherapy; however, responses are typically short lived. Thus, there is an urgent need to develop more effective treatments.
View Article and Find Full Text PDFCancer Res Commun
September 2024
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.
View Article and Find Full Text PDFPurpose: Histologic transformation to small cell lung cancer (SCLC) is a mechanism of treatment resistance in patients with advanced oncogene-driven lung adenocarcinoma (LUAD) that currently requires histologic review for diagnosis. Herein, we sought to develop an epigenomic cell-free DNA (cfDNA)-based approach to noninvasively detect small cell transformation in patients with EGFR mutant (EGFRm) LUAD.
Experimental Design: To characterize the epigenomic landscape of transformed (t)SCLC relative to LUAD and de novo SCLC, we performed chromatin immunoprecipitation sequencing (ChIP-seq) to profile the histone modifications H3K27ac, H3K4me3, and H3K27me3; methylated DNA immunoprecipitation sequencing (MeDIP-seq); assay for transposase-accessible chromatin sequencing; and RNA sequencing on 26 lung cancer patient-derived xenograft (PDX) tumors.
Endothelial programmed death-ligand 1 (PD-L1) expression is higher in tumors than in normal tissues. Also, tumoral vasculatures tend to be leakier than normal vessels leading to a higher trans-endothelial or transmural fluid flow. However, it is not clear whether such elevated transmural flow can control endothelial PD-L1 expression.
View Article and Find Full Text PDFOne of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues.
View Article and Find Full Text PDFEnhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma (PRAD) and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.
View Article and Find Full Text PDFUnlabelled: A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA.
View Article and Find Full Text PDFCancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers.
View Article and Find Full Text PDFCD73 and adenosine have gained prominence in lung cancer research. The gene encodes CD73, known as an ectonucleotidase, which plays a crucial role within tumor cells, with immune-suppressive properties. Beyond cancer, CD73 exerts an influence on cardiac, neural, and renal functions, affecting cardiac, neural, and renal functions.
View Article and Find Full Text PDFCancer Immunol Res
November 2023
Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8 T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain.
View Article and Find Full Text PDFDespite the success of KRAS G12C inhibitors in non-small cell lung cancer (NSCLC), more effective treatments are needed. One preclinical strategy has been to cotarget RAS and mTOR pathways; however, toxicity due to broad mTOR inhibition has limited its utility. Therefore, we sought to develop a more refined means of targeting cap-dependent translation and identifying the most therapeutically important eukaryotic initiation factor 4F complex-translated (eIF4F-translated) targets.
View Article and Find Full Text PDF