98%
921
2 minutes
20
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs in NEPC, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310309 | PMC |
http://dx.doi.org/10.1038/s41467-024-51156-5 | DOI Listing |
JCO Clin Cancer Inform
September 2025
USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Purpose: To evaluate a generative artificial intelligence (GAI) framework for creating readable lay abstracts and summaries (LASs) of urologic oncology research, while maintaining accuracy, completeness, and clarity, for the purpose of assessing their comprehension and perception among patients and caregivers.
Methods: Forty original abstracts (OAs) on prostate, bladder, kidney, and testis cancers from leading journals were selected. LASs were generated using a free GAI tool, with three versions per abstract for consistency.
JCO Precis Oncol
September 2025
Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA.
Clin Nucl Med
September 2025
Department of Radiology and Nuclear Medicine, Comprehensive Cancer Care and Research Center (SQCCCRC), University Medical City, Muscat, Oman.
PSMA-targeted radioligand therapies with 177Lu-PSMA-617 have shown promising response rates with favorable toxicity in patients with metastasized castration-resistant prostate cancer. We report a case of a 72-year-old man with metastatic castration-resistant prostate cancer having comorbidities of DM, HTN, and end-stage renal disease (ESRD) on regular hemodialysis. The patient received 2 doses of 7.
View Article and Find Full Text PDFJ Med Chem
September 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.
View Article and Find Full Text PDFJAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDF