Induced pluripotent stem cell (iPSC)-derived natural killer (iNK) cells offer a promising platform for off-the-shelf immunotherapy against hematological malignancies. NK cell function is dynamically regulated through education driven by inhibitory receptors, including CD94/NKG2A and killer cell immunoglobulin-like receptors (KIR). However, the acquisition of inhibitory receptors in iNK cells and their role during differentiation and education remains poorly defined.
View Article and Find Full Text PDFUnlabelled: RNA-binding proteins (RBPs) are important regulators of post-transcriptional gene expression. Understanding which and how RBPs promote cancer progression is crucial for cancers that lack effective targeted therapies such as triple negative breast cancer (TNBC). Here, we employ both and pooled CRISPR/Cas9 screening to identify 50 RBP candidates that are essential for TNBC cell survival.
View Article and Find Full Text PDFWe demonstrate here the use of optical genome mapping (OGM) to detect genetic alterations arising from gene editing by various technologies in human induced pluripotent stem cells (iPSCs). OGM enables an unbiased and comprehensive analysis of the entire genome, allowing the detection of genomic structural variants (SVs) of all classes with a quantitative variant allele frequency (VAF) sensitivity of 5%. In this pilot study, we conducted a comparative dual analysis between the parental iPSCs and the derived cells that had undergone gene editing using various techniques, including transposons, lentiviral transduction, and CRISPR-Cas9-mediated safe harbor locus insertion at the adeno-associated virus integration site 1 (AAVS1).
View Article and Find Full Text PDFNatural killer (NK) cells are innate immune cells that play a crucial role in the body's defense against tumors and viral infections. The generation of human induced pluripotent stem cell (iPSC)-derived chimeric antigen receptor (CAR) expressing NK cells has emerged as a promising avenue for "off the shelf" cancer immunotherapy. Here, we utilized an NK cell-optimized CAR construct that includes the transmembrane domain of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain, which has been demonstrated to stimulate robust antigen-specific NK cell-mediated antitumor activity.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-β) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity.
View Article and Find Full Text PDFCancer Res Commun
June 2024
T cells, natural killer (NK) cells, macrophages (Macs), and dendritic cells (DCs) are among the most common sources for immune-cell-based therapies for cancer. Antitumor activity can be enhanced in induced pluripotent stem cell (iPSC)-derived immune cells by using iPSCs as a platform for stable genetic modifications that impact immuno-activating or -suppressive signaling pathways, such as transducing a chimeric antigen receptor (CAR) or deletion of immunosuppressive checkpoint molecules. This review outlines the utility of four iPSC-derived immune-cell-based therapies, highlight the latest progress and future trends in the genome-editing strategies designed to improve efficacy, safety, and universality, and provides perspectives that compare different contexts in which each of these iPSC-derived immune cell types can be most effectively used.
View Article and Find Full Text PDFNatural killer (NK) cells are known to mediate killing of various cancer types, but tumor cells can develop resistance mechanisms to escape NK cell-mediated killing. Here, we use a "two cell type" whole genome CRISPR-Cas9 screening system to discover key regulators of tumor sensitivity and resistance to NK cell-mediated cytotoxicity in human glioblastoma stem cells (GSC). We identify CHMP2A as a regulator of GSC resistance to NK cell-mediated cytotoxicity and we confirm these findings in a head and neck squamous cells carcinoma (HNSCC) model.
View Article and Find Full Text PDFTreatment of cancer with allogeneic natural killer (NK) cell therapies has seen rapid development, especially use against hematologic malignancies. Clinical trials of NK cell-based adoptive transfer to treat relapsed or refractory malignancies have used peripheral blood, umbilical cord blood and pluripotent stem cell-derived NK cells, with each approach undergoing continued clinical development. Improving the potency of these therapies relies on genetic modifications to improve tumor targeting and to enhance expansion and persistence of the NK cells.
View Article and Find Full Text PDFJ Allergy Clin Immunol
June 2022
Background: Hoffman syndrome is a syndromic, inborn error of immunity due to autosomal-dominant mutations in TOP2B, an essential gene required to alleviate topological stress during DNA replication and gene transcription. Although mutations identified in patients lead to a block in B-cell development and the absence of circulating B cells, an effect on natural killer (NK) cells was not previously examined.
Objective: We sought to determine whether disease-associated mutations in TOP2B impact NK-cell development and function.
Cell Stem Cell
December 2021
In this issue of Cell Stem Cell, Woan et al., (2021) investigate the anti-cancer activity of triple gene edited iPSC-derived natural killer (NK) cells and demonstrate that expression of a modified CD16a and interleukin (IL)-15 receptor combined with knockout of CD38 improves NK cell-mediated activity against leukemia and multiple myeloma.
View Article and Find Full Text PDFWith an increasing number of patients with degenerative hepatic diseases, such as liver fibrosis, and a limited supply of donor organs, there is an unmet need for therapies that can repair or regenerate damaged liver tissue. Treatment with macrophages that are capable of phagocytosis and anti-inflammatory activities such as secretion of matrix metalloproteinases (MMPs) provide an attractive cellular therapy approach. Human induced pluripotent stem cells (iPSCs) are capable of efficiently generating a large-scale, homogenous population of human macrophages using fully defined feeder- and serum-free differentiation protocol.
View Article and Find Full Text PDFNatural killer (NK) cells derived or isolated from different sources have been gaining in importance for cancer therapies. In this study, we evaluate and compare key characteristics between NK cells derived or isolated from umbilical cord blood, umbilical cord blood hematopoietic stem/progenitor cells, peripheral blood, and induced pluripotent stem cells (iPSCs). Specifically, we find CD56 NK cells isolated and expanded directly from umbilical cord blood (UCB56) and NK cells derived from CD34 hematopoietic stem/progenitors in umbilical cord blood (UCB34) differ in their expression of markers associated with differentiation including CD16, CD2, and killer Ig-like receptors (KIRs).
View Article and Find Full Text PDFThe development of immunotherapeutic monoclonal antibodies targeting checkpoint inhibitory receptors, such as programmed cell death 1 (PD-1), or their ligands, such as PD-L1, has transformed the oncology landscape. However, durable tumor regression is limited to a minority of patients. Therefore, combining immunotherapies with those targeting checkpoint inhibitory receptors is a promising strategy to bolster antitumor responses and improve response rates.
View Article and Find Full Text PDFCytokine-inducible SH2-containing protein (CIS; encoded by the gene CISH) is a key negative regulator of interleukin-15 (IL-15) signaling in natural killer (NK) cells. Here, we develop human CISH-knockout (CISH) NK cells using an induced pluripotent stem cell-derived NK cell (iPSC-NK cell) platform. CISH iPSC-NK cells demonstrate increased IL-15-mediated JAK-STAT signaling activity.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) can provide a platform to model bone organogenesis and disease. To reflect the developmental process of the human skeleton, hPSC differentiation methods should include osteogenic progenitors (OPs) arising from three distinct embryonic lineages: the paraxial mesoderm, lateral plate mesoderm, and neural crest. Although OP differentiation protocols have been developed, the lineage from which they are derived, as well as characterization of their genetic and molecular differences, has not been well reported.
View Article and Find Full Text PDFAntibody-dependent cellular cytotoxicity (ADCC) is a key effector mechanism of natural killer (NK) cells that is mediated by therapeutic monoclonal antibodies (mAbs). This process is facilitated by the Fc receptor CD16a on human NK cells. CD16a appears to be the only activating receptor on NK cells that is cleaved by the metalloprotease a disintegrin and metalloproteinase-17 upon stimulation.
View Article and Find Full Text PDFCurr Treat Options Neurol
October 2019
Purpose Of Review: This review presents a critical appraisal of the use of autologous hematopoietic cell transplant (AHCT) for the treatment of multiple sclerosis. We present the reader with a brief review on the AHCT procedure, its immunomodulatory mechanism of action in MS, the most recent evidence in support of its use in patients with relapsing-remitting multiple sclerosis (RRMS), as well as its cost considerations.
Recent Findings: The first meta-analysis of clinical trials of AHCT for patients with MS demonstrated durable 5-year progression-free survival rates and low treatment-related mortality.
Adoptive immunotherapy using immune effector cells has revolutionized cancer treatments with approval of two autologous chimeric antigen receptor (CAR) T cell therapies by the US FDA. Clinical trials using natural killer (NK) cell-based adoptive immunotherapy have been shown to be safe and effective for treatment of multiple malignancies, especially acute myelogenous leukemia. However, most of these trails use primary NK cells isolated from peripheral or cord blood which can have donor-dependent variability and can be challenging to genetic engineer to improve antitumor functions, limiting the widespread use of this promising new therapy.
View Article and Find Full Text PDFMethods Mol Biol
June 2020
Human natural killer (NK) cell-based adoptive anticancer immunotherapy has gained intense interest with many clinical trials actively recruiting patients to treat a variety of both hematological malignancies and solid tumors. Most of these trials use primary NK cells isolated either from peripheral blood (PB-NK cells) or umbilical cord blood (UCB-NK cells), though these sources require NK cell collection for each patient leading to donor variability and heterogeneity in the NK cell populations. In contrast, NK cells derived human embryonic stem cells (hESC-NK cells) or induced pluripotent stem cells (hiPSC-NK cells) provide more homogeneous cell populations that can be grown at clinical scale, and genetically engineered if needed.
View Article and Find Full Text PDFMouse and human pluripotent stem cells have been widely used to study the development of the hematopoietic and immune systems. Although not all cells can be derived with the same efficiency, immune cells such as natural killer (NK) cells and macrophages can be easily produced from PSCs to enable development of new cell-based therapies. NK cells and macrophages are part of the innate immune system, the first line of defense against malignancies and infectious disease.
View Article and Find Full Text PDFAnti-tumor mAbs are the most widely used and characterized cancer immunotherapy. Despite having a significant impact on some malignancies, most cancer patients respond poorly or develop resistance to this therapy. A known mechanism of action of these therapeutic mAbs is antibody-dependent cell-mediated cytotoxicity (ADCC), a key effector function of human NK cells.
View Article and Find Full Text PDFSemin Immunopathol
January 2019
Cell therapy is emerging as a very promising therapeutic modality against cancer, spearheaded by the clinical success of chimeric antigen receptor (CAR) modified T cells for B cell malignancies. Currently, FDA-approved CAR-T cell products are based on engineering of autologous T cells harvested from the patient, typically using a central manufacturing facility for gene editing before the product can be delivered to the clinic and infused to the patients. For a broader implementation of advanced cell therapy and to reduce costs, it would be advantageous to use allogeneic "universal" cell therapy products that can be stored in cell banks and provided upon request, in a manner analogous to biopharmaceutical drug products.
View Article and Find Full Text PDFChimeric antigen receptors (CARs) significantly enhance the anti-tumor activity of immune effector cells. Although most studies have evaluated CAR expression in T cells, here we evaluate different CAR constructs that improve natural killer (NK) cell-mediated killing. We identified a CAR containing the transmembrane domain of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain to mediate strong antigen-specific NK cell signaling.
View Article and Find Full Text PDF