Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrate here the use of optical genome mapping (OGM) to detect genetic alterations arising from gene editing by various technologies in human induced pluripotent stem cells (iPSCs). OGM enables an unbiased and comprehensive analysis of the entire genome, allowing the detection of genomic structural variants (SVs) of all classes with a quantitative variant allele frequency (VAF) sensitivity of 5%. In this pilot study, we conducted a comparative dual analysis between the parental iPSCs and the derived cells that had undergone gene editing using various techniques, including transposons, lentiviral transduction, and CRISPR-Cas9-mediated safe harbor locus insertion at the adeno-associated virus integration site 1 (AAVS1). These analyses demonstrated that iPSCs that had been edited using transposons or lentiviral transduction resulted in a high number of transgene insertions in the genome. In contrast, CRISPR-Cas9 technology resulted in a more precise and limited transgene insertion, with only a single target sequence observed at the intended locus. These studies demonstrate the value of OGM to detect genetic alterations in engineered cell products and suggests that OGM, together with DNA sequencing, could be a valuable tool when evaluating genetically modified iPSCs for research and therapeutic purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247703PMC
http://dx.doi.org/10.1101/2025.05.10.653237DOI Listing

Publication Analysis

Top Keywords

optical genome
8
genome mapping
8
ogm detect
8
detect genetic
8
genetic alterations
8
gene editing
8
transposons lentiviral
8
lentiviral transduction
8
unveiling genomic
4
genomic rearrangements
4

Similar Publications

BackgroundGlaucoma is recognized as the second-leading cause of complete blindness in developed countries and a significant contributor to irreversible vision loss worldwide. Understanding the potential genetic links between neurodegenerative diseases, such as Parkinson's disease, and glaucoma is crucial for developing preventive strategies.MethodsThis study utilized data from Genome-Wide Association Studies databases, focusing on European populations without gender restrictions.

View Article and Find Full Text PDF

Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.

Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.

View Article and Find Full Text PDF

Background: Growing evidence suggests a close association between circulating micronutrient levels and neuroimmune diseases. Nevertheless, the causal relationship between them remains unclear. Furthermore, due to confounding factors, many micronutrients implicated in these diseases remain unidentified.

View Article and Find Full Text PDF

Tropism and Retinal Transduction Efficiency of Adeno-Associated Virus Serotypes in Mice.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.

Purpose: Adeno-associated viruses (AAVs) have become the preferred vector for gene therapy in ophthalmology. However, requirements for specific cell surface receptors limit AAV-mediated retinal cell transduction efficiency. This led to the need to engineer novel AAV vectors for widespread retinal transduction and transgene expression.

View Article and Find Full Text PDF

Visualizing Electronic Vibrations on the Wave Function Tiles of the Low-Lying Singlet Excited States of Benzene.

J Chem Theory Comput

September 2025

International Center for Quantum and Molecular Structures, Faculty of Physics, Shanghai University, Shanghai 200444, China.

The representation of the electronic structure of benzene is important for understanding the properties of planar and monocyclic organic carbon compounds. Resonant Kekulé and conjugated structures based on localized and delocalized electronic theories, respectively, can be used to depict the ground state of benzene; however, depictions of its electrons vibrating in the excited states remain to be clarified. This paper presents a novel algorithm for exploring the three lowest lying vertically singlet excited states of benzene, focusing on the electronic excitations between occupied π and unoccupied π* orbitals.

View Article and Find Full Text PDF