Publications by authors named "Corinne D Scown"

To meaningfully broaden the supply of fuels for the transportation sector, biofuel production must be scaled up and this requires a wider array of biomass feedstocks, including agricultural residues and organic waste. Rather than pursuing conversion of lignocellulosic biomass to fuels and anaerobic digestion of wastes as separate pathways, there are economic and environmental advantages associated with integrating these processes in a single facility. However, existing research rarely goes beyond carbon footprints in quantifying the effects of such a shift in bioenergy production.

View Article and Find Full Text PDF

Transitioning to a bioeconomy that makes use of low-emission and waste feedstocks requires greater flexibility to accommodate seasonal variations and mitigate long-term storage challenges, such as material loss and fire risk. To achieve this goal, biomass deconstruction technologies must efficiently handle diverse feedstocks. Here, we assess the cost of using butylaminea distillable solventto deconstruct 22 different biomass feedstocks: 7 herbaceous, 9 woody, 4 food processing residues, and 2 blends.

View Article and Find Full Text PDF

Central to the long-term vision for biomanufacturing is the ability to deconstruct plant cell walls to sugars that microbes can convert to products. Aside from glucose, the most abundant sugar in biomass is xylose, a pentose sugar. Industrially relevant microbes have been engineered to co-ferment xylose and glucose.

View Article and Find Full Text PDF

Beta-ketoadipate (βKA) is an intermediate of the βKA pathway involved in the degradation of aromatic compounds in several bacteria and fungi. Beta-ketoadipate also represents a promising chemical for the manufacturing of performance-advantaged nylons. We established a strategy for the in planta synthesis of βKA via manipulation of the shikimate pathway and the expression of bacterial enzymes from the βKA pathway.

View Article and Find Full Text PDF

Transforming building materials from net life-cycle COe emitters to carbon sinks is a key pathway towards decarbonizing the industrial sector. Current life-cycle assessments of materials (particularly "low-carbon" materials) often focus on cradle-to-gate emissions, which can exclude emissions and uptake (i.e.

View Article and Find Full Text PDF

Indigoidine is a bioadvantaged platform molecule with diverse applications, including use as a textile dye, biotransistor, biosolar cell, biosensor, and food coloring. There are multiple microbial hosts and carbon sources that can be used and optimized for its production, yet there is limited guidance for which options have the greatest commercial potential. Here, we consider five different host microbes and combine genome-scale metabolic models with techno-economic and lifecycle assessment models.

View Article and Find Full Text PDF

Growing the bioeconomy requires products and pathways that are cost-competitive. Technoeconomic analyses (TEAs) aim to predict the long-term economic viability and often use what are known as n plant cost and performance parameters. However, as TEA is more widely adopted to inform everything from early-stage research to company and investor decision-making, the n plant approach is inadequate and risks being misused to inform the early stages of scale-up.

View Article and Find Full Text PDF

California's organic waste diversion law, SB 1383, mandates a 75% reduction in organics disposal by 2025 to reduce landfill methane emissions. Composting will likely be the primary alternative to landfilling, and 75-100 new large-scale composting facilities must be sited in the state to meet its diversion goal. We developed a strategy for evaluating site suitability for commercial composting by incorporating land-use, economic, and environmental justice criteria.

View Article and Find Full Text PDF

Background: Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue.

View Article and Find Full Text PDF

Technologies that enable plastic circularity offer a path to reducing waste generation, improving environmental quality, and reducing reliance on fossil feedstocks. However, life-cycle assessment (LCA) methods commonly applied to these systems fall far short of capturing the full suite of advantages and tradeoffs. This perspective highlights inconsistencies in both the research questions and methodological choices across the growing body of LCA literature for plastics recycling.

View Article and Find Full Text PDF

Biomanufacturing practitioners and researchers describe the norms that should govern the growing, global field, to include safety, security, sustainability, and social responsibility. These '4S Principles' should be broadly adopted so that the future of the field may provide the greatest benefits to society.

View Article and Find Full Text PDF

Electrifying freight trucks will be key to alleviating air pollution burdens on disadvantaged communities and mitigating climate change. The United States plans to pursue this aim by adding vehicle charging infrastructure along specific freight corridors. This study explores the coevolution of the electricity grid and freight trucking landscape using an integrated assessment framework to identify when each interstate and drayage corridor becomes advantageous to electrify from a climate and human health standpoint.

View Article and Find Full Text PDF

Biomass-derived sustainable aviation fuel holds significant potential for decarbonizing the aviation sector. Its long-term viability depends on crop choice, longevity of soil organic carbon (SOC) sequestration, and the biomass-to-biojet fuel conversion efficiency. We explored the impact of fuel price and SOC value on viable biojet fuel production scale by integrating an agroecosystem model with a field-to-biojet fuel production process model for 1,4-dimethylcyclooctane (DMCO), a representative high-performance biojet fuel molecule, from Miscanthus, sorghum, and switchgrass.

View Article and Find Full Text PDF

The frequency, severity, and extent of climate extremes in future will have an impact on human well-being, ecosystems, and the effectiveness of emissions mitigation and carbon sequestration strategies. The specific objectives of this study were to downscale climate data for US weather stations and analyze future trends in meteorological drought and temperature extremes over continental United States (CONUS). We used data from 4161 weather stations across the CONUS to downscale future precipitation projections from three Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project Phase Six (CMIP6), specifically for the high emission scenario SSP5 8.

View Article and Find Full Text PDF

A wide variety of wasted or underutilized organic feedstocks can be leveraged to build a sustainable bioeconomy, ranging from crop residues to food processor residues and municipal wastes. Leveraging these feedstocks is both high-risk and high-reward. Converting mixed, variable, and/or highly contaminated feedstocks can pose engineering and economic challenges.

View Article and Find Full Text PDF

Plastic recycling presents a vexing challenge. Mechanical recycling offers substantial greenhouse gas emissions savings relative to virgin plastic production but suffers from degraded aesthetic and mechanical properties. Polypropylene, one of the most widely used and lowest-cost plastics, features methyl pendants along the polymer backbone, rendering it particularly susceptible to declining properties, performance, and aesthetics across a succession of mechanical recycles.

View Article and Find Full Text PDF
Article Synopsis
  • * Anaerobic bioconversion limits substrate use, reduces product yields, and offers less product variety compared to aerobic methods.
  • * Advances in microbial strain engineering, including redox cofactor engineering and metabolic modeling, aim to improve bioproduction under low-oxygen conditions, paving the way for industrial-scale applications.
View Article and Find Full Text PDF

Switchgrass ( L.) is a promising perennial bioenergy crop that achieves high yields with relatively low nutrient and energy inputs. Modification of cell wall composition for reduced recalcitrance can lower the costs of deconstructing biomass to fermentable sugars and other intermediates.

View Article and Find Full Text PDF

Falling costs of lithium-ion (Li-ion) batteries have made them attractive for grid-scale energy storage applications. Energy storage will become increasingly important as intermittent renewable generation and more frequent extreme weather events put stress on the electricity grid. Environmental groups across the United States are advocating for the replacement of the highest-emitting power plants, which run only at times of peak demand, with Li-ion battery systems.

View Article and Find Full Text PDF

Scalable, low-cost biofuel and biochemical production can accelerate progress on the path to a more circular carbon economy and reduced dependence on crude oil. Rather than producing a single fuel product, lignocellulosic biorefineries have the potential to serve as hubs for the production of fuels, production of petrochemical replacements, and treatment of high-moisture organic waste. A detailed techno-economic analysis and life-cycle greenhouse gas assessment are developed to explore the cost and emission impacts of integrated corn stover-to-ethanol biorefineries that incorporate both codigestion of organic wastes and different strategies for utilizing biogas, including onsite energy generation, upgrading to bio-compressed natural gas (bioCNG), conversion to poly(3-hydroxybutyrate) (PHB) bioplastic, and conversion to single-cell protein (SCP).

View Article and Find Full Text PDF

Composting can divert organic waste from landfills, reduce landfill methane emissions, and recycle nutrients back to soils. However, the composting process is also a source of greenhouse gas and air pollutant emissions. Researchers, regulators, and policy decision-makers all rely on emissions estimates to develop local emissions inventories and weigh competing waste diversion options, yet reported emission factors are difficult to interpret and highly variable.

View Article and Find Full Text PDF

Technoeconomic analysis and life-cycle assessment are critical to guiding and prioritizing bench-scale experiments and to evaluating economic and environmental performance of biofuel or biochemical production processes at scale. Traditionally, commercial process simulation tools have been used to develop detailed models for these purposes. However, developing and running such models can be costly and computationally intensive, which limits the degree to which they can be shared and reproduced in the broader research community.

View Article and Find Full Text PDF

Increasingly stringent limits on nutrient discharges are motivating water resource recovery facilities (WRRFs) to consider the implementation of sidestream nutrient removal or recovery technologies. To further increase biogas production and reduce landfilled waste, WRRFs with excess anaerobic digestion capacity can accept other high-strength organic waste (HSOW) streams. The goal of this study was to characterize and evaluate the life-cycle global warming potential (GWP), eutrophication potential, and economic costs and benefits of sidestream nutrient management and biosolid management strategies following digestion of sewage sludge augmented by HSOW.

View Article and Find Full Text PDF