Publications by authors named "Chongyu Ren"

Dementia is characterized by loss of cognitive function, social deficits, and emotional impairment and is prevalent in tau-mediated disorders. However, the mechanisms underlying this cognitive and behavioral dysfunction remain uncertain, as phenotypes do not necessarily correlate well with the presence of tau pathology. Here, we identify critical roles for the cerebellum in regulating cognition and behavior in a tauopathy mouse model.

View Article and Find Full Text PDF

Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and Neurodevelopmental Disorders (NDDs) (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al.

View Article and Find Full Text PDF
Article Synopsis
  • Cerebellar dysfunction is linked to autism spectrum disorders (ASDs) and has shown to be present in individuals with fragile X syndrome (FXS).
  • The study highlights the importance of the Fmr1 gene in the cerebellum and its role in behaviors associated with ASD, such as social interaction and sensory processing.
  • Targeting specific cerebellar regions, like Crus1, shows potential for improving FXS-related behaviors, suggesting new avenues for therapeutic approaches.
View Article and Find Full Text PDF

Targeted therapies for epilepsies associated with the mTORC1 signaling negative regulator GATOR1 are lacking. NPRL2 is a subunit of the GATOR1 complex and mutations in GATOR1 subunits, including , are associated with epilepsy. To delineate the mechanisms underlying NPRL2-related epilepsies, we created a mouse () model with neocortical loss of .

View Article and Find Full Text PDF

The cerebellum has been increasingly implicated in autism spectrum disorder (ASD) with many ASD-linked genes impacting both cerebellar function and development. However, the precise timing and critical periods of when abnormal cerebellar neurodevelopment contributes to ASD-relevant behaviors remains poorly understood. In this study, we identify a critical period for the development of ASD-relevant behaviors in a cerebellar male mouse model of tuberous sclerosis complex (TSC), by using the mechanistic target of rapamycin (mTOR) inhibitor, rapamycin, to pharmacologically inhibit dysregulated downstream signaling.

View Article and Find Full Text PDF

Cerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC.

View Article and Find Full Text PDF

Nephronophthisis (NPHP), the leading genetic cause of end-stage renal failure in children and young adults, is a group of autosomal recessive diseases characterized by kidney-cyst degeneration and fibrosis for which no therapy is currently available. To date, mutations in >25 genes have been identified as causes of this disease that, in several cases, result in chronic DNA damage in kidney tubular cells. Among such mutations, those in the transcription factor-encoding GLIS2 cause NPHP type 7.

View Article and Find Full Text PDF

Hereditary renal cystic diseases are characterized by defects in primary cilia of renal tubular epithelial cells and abnormality of tubular epithelium, which ultimately result in the development of renal cysts. However, the mechanism leading from abnormality of the tubular epithelium to cystogenesis is not well understood. In this report, we demonstrate a critical role for Robo2 in regulating epithelial development, including ciliogenesis, polarization, and differentiation.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common clinical condition of growing incidence. Patients who suffer severe AKI have a higher risk of developing interstitial fibrosis, chronic kidney disease, and end-stage renal disease later in life. Cellular senescence is a persistent cell cycle arrest and altered gene expression pattern evoked by multiple stressors.

View Article and Find Full Text PDF

Enlargement of kidney tubules is a common feature of multiple cystic kidney diseases in humans and mice. However, while some of these pathologies are characterized by cyst expansion and organ enlargement, in others, progressive interstitial fibrosis and kidney atrophy prevail. The Kif3a knockout mouse is an established non-orthologous mouse model of cystic kidney disease.

View Article and Find Full Text PDF

Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade.

View Article and Find Full Text PDF

Hedgehog (Hh) is an evolutionary conserved signaling pathway that has important functions in kidney morphogenesis and adult organ maintenance. Recent work has shown that Hh signaling is reactivated in the kidney after injury and is an important mediator of progressive fibrosis. Pericytes and fibroblasts have been proposed to be the principal cells that respond to Hh ligands, and pharmacological attenuation of Hh signaling has been considered as a possible treatment for fibrosis, but the effect of Hh inhibition on tubular epithelial cells after kidney injury has not been reported.

View Article and Find Full Text PDF

Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains.

View Article and Find Full Text PDF

Objectives/hypothesis: To compare three different inoculation techniques for the development of cytomegalovirus (CMV)-induced sensorineural hearing loss (SNHL) in a mouse model.

Study Design: A prospective experimental animal study.

Methods: BALB/c mice underwent inoculation using green fluorescent protein-expressing mouse cytomegalovirus (mCMV-GFP) via transtympanic (TT), intraperitoneal (IP), or intracranial (IC) routes.

View Article and Find Full Text PDF

Temporary hearing threshold shift (TTS) resulting from a "benign" noise exposure can cause irreversible auditory nerve afferent terminal damage and retraction. While hearing thresholds and acute tissue injury recover within 1-2 weeks after a noise overexposure, it is not clear if multiple TTS noise exposures would result in cumulative damage even though sufficient TTS recovery time is provided. Here, we tested whether repeated TTS noise exposures affected permanent hearing thresholds and examined how that related to inner ear histopathology.

View Article and Find Full Text PDF

The majority of auditory nerve fibers exhibit prominent spontaneous activity in the absence of sound. More than half of all auditory nerve fibers in CBA mice have spontaneous firing rates higher than 20 spikes/s, with some fibers exceeding 100 spikes/s. We tested whether and to what extent endbulb synapses are depressed by activity between 10 and 100 Hz, within the spontaneous firing rates of auditory nerve fibers.

View Article and Find Full Text PDF

Mice with smooth muscle (SM)-specific knockout of Na(+)/Ca(2+) exchanger type-1 (NCX1(SM-/-)) and the NCX inhibitor, SEA0400, were used to study the physiological role of NCX1 in mouse mesenteric arteries. NCX1 protein expression was greatly reduced in arteries from NCX1(SM-/-) mice generated with Cre recombinase. Mean blood pressure (BP) was 6-10 mmHg lower in NCX1(SM-/-) mice than in wild-type (WT) controls.

View Article and Find Full Text PDF

L-type voltage-gated Ca(2+) channels (LVGCs) are functionally downregulated in arterial smooth muscle (SM) cells (ASMCs) of mice with SM-specific knockout of Na(+)/Ca(2+) exchanger type-1 (NCX1(SM-/-)) (32). Here, using activators and inhibitors of protein kinase C (PKC), we explore the regulation of these channels by a PKC-dependent mechanism. In both wild-type (WT) and NCX1(SM-/-) myocytes, the PKC activator phorbol 12,13-dibutyrate (PDBu) increases LVGC conductance, decreases channel closing rate, and shifts the voltage dependence of channel opening to more negative potentials.

View Article and Find Full Text PDF

Sympathetic denervation is frequently observed in heart disease. To investigate the linkage of sympathetic denervation and cardiac arrhythmia, we developed a rat model of chemical sympathectomy by subcutaneous injections of 6-hydroxydopamine (6-OHDA). Cardiac sympathetic innervation was visualized by means of a glyoxylic catecholaminergic histofluorescence method.

View Article and Find Full Text PDF

Nerve sprouting in healed myocardial infarction has been associated with increased incidences of ventricular tachyarrhythmia and sudden cardiac death. However, the underlying electrophysiological mechanisms are unclear. To investigate the linkage between nerve sprouting and potassium channel function, we developed a rat model of cardiac sympathetic nerve sprouting by chronic subcutaneous injection of 4-methylcatechol, a potent stimulator of nerve growth factor (NGF) synthesis.

View Article and Find Full Text PDF

Objective: To investigate the effect of constrainting stress on biological characters and function of mitochondrial membrane in rat heart and to explore the possible mitochondrial membrane mechanism underlying stress-induced heart injury.

Method: Stress animal model was established. After constrained for different times, all rats were killed and several indexes were examined.

View Article and Find Full Text PDF