A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Activation of L-type Ca2+ channels by protein kinase C is reduced in smooth muscle-specific Na+/Ca2+ exchanger knockout mice. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

L-type voltage-gated Ca(2+) channels (LVGCs) are functionally downregulated in arterial smooth muscle (SM) cells (ASMCs) of mice with SM-specific knockout of Na(+)/Ca(2+) exchanger type-1 (NCX1(SM-/-)) (32). Here, using activators and inhibitors of protein kinase C (PKC), we explore the regulation of these channels by a PKC-dependent mechanism. In both wild-type (WT) and NCX1(SM-/-) myocytes, the PKC activator phorbol 12,13-dibutyrate (PDBu) increases LVGC conductance, decreases channel closing rate, and shifts the voltage dependence of channel opening to more negative potentials. Three different PKC inhibitors, bisindolylmaleimide, Ro-31-8220, and PKC 19-31, all decrease LVGC currents in WT myocytes and prevent the PDBu-induced increase in LVGC current. Dialysis of WT ASMCs with activated PKC increases LVGC current and decreases channel closing rate. These results demonstrate that PKC activates LVGCs in ASMCs. The phosphatase inhibitor calyculin A increases LVGC conductance by over 50%, indicating that the level of LVGC activation is a balance between phosphatase and PKC activities. PDBu causes a larger increase in LVGC conductance and a larger shift in voltage dependence in NCX1(SM-/-) myocytes than in WT myocytes. The inhibition of PKC with PKC 19-31 decreased LVGC conductance by 65% in WT myocytes but by only 37% in NCX1(SM-/-) myocytes. These results suggest that LVGCs are in a state of low PKC-induced phosphorylation in NCX1(SM-/-) myocytes. We conclude that in NCX1(SM-/-) myocytes, reduced Ca(2+) entry via NCX1 lowers cytosolic [Ca(2+)], thereby reducing PKC activation that lowers LVGC activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867443PMC
http://dx.doi.org/10.1152/ajpheart.00965.2009DOI Listing

Publication Analysis

Top Keywords

ncx1sm-/- myocytes
20
lvgc conductance
16
increases lvgc
12
pkc
10
lvgc
9
ca2+ channels
8
protein kinase
8
na+/ca2+ exchanger
8
myocytes
8
decreases channel
8

Similar Publications