Publications by authors named "Chin-Cheng Chen"

Background: Quality assurance (QA) for ultra-high dose rate (UHDR) irradiation is a crucial aspect in the emerging field of FLASH radiotherapy (FLASH-RT). This innovative treatment approach delivers radiation at UHDR, demanding careful adoption of QA protocols and procedures. A comprehensive understanding of beam properties and dosimetry consistency is vital to ensure the safe and effective delivery of FLASH-RT.

View Article and Find Full Text PDF

Purpose: Recurrent or new primary breast cancer requiring comprehensive regional nodal irradiation after prior radiation therapy (RT) to the supraclavicular area and upper axilla is challenging due to cumulative brachial plexus (BP) dose tolerance. We assessed BP dose sparing achieved with pencil beam scanning proton therapy (PBS-PT) and photon volumetric modulated arc therapy (VMAT).

Methods And Materials: In an institutional review board-approved planning study, all patients with ipsilateral recurrent breast cancer treated with PBS-PT re-RT (PBT1) with at least partial BP overlap from prior photon RT were identified.

View Article and Find Full Text PDF

This study explores the feasibility and potential dosimetric and time efficiency benefit of proton Pencil Beam Scanning (PBS) craniospinal irradiation with a single posterior-anterior (SPA) brain field. The SPA approach was compared to our current clinical protocol using Bilateral Posterior Oblique brain fields (BPO). Ten consecutive patients were simulated in the head-first supine position on a long BOS frame and scanned using 3 mm CT slice thickness.

View Article and Find Full Text PDF

Purpose: The study evaluates the efficacy of cone-beam computed tomography (CBCT)-based synthetic CTs (sCT) as a potential alternative to verification CT (vCT) for enhanced treatment monitoring and early adaptation in proton therapy.

Methods: Seven common treatment sites were studied. Two sets of sCT per case were generated: direct-deformed (DD) sCT and image-correction (IC) sCT.

View Article and Find Full Text PDF

Introduction: Dose perturbation of spot-scanning proton beams passing through a dislocated metallic port (MP) of a breast tissue expander may degrade target dose coverage or deliver excess dose to the ipsilateral lung and heart. The feasibility of utilizing daily cone-beam computed tomography (CBCT)-based synthetic CTs (synCTs) for dose reconstruction was evaluated, and the fractional and cumulative dosimetric impact due to daily MP dislocation is reported.

Methods: The synCT was generated by deforming the simulation CT to daily CBCT.

View Article and Find Full Text PDF

Background: Several studies have shown pencil beam scanning (PBS) proton therapy is a feasible and safe modality to deliver conformal and ultra-high dose rate (UHDR) FLASH radiation therapy. However, it would be challenging and burdensome to conduct the quality assurance (QA) of the dose rate along with conventional patient-specific QA (psQA).

Purpose: To demonstrate a novel measurement-based psQA program for UHDR PBS proton transmission FLASH radiotherapy (FLASH-RT) using a high spatiotemporal resolution 2D strip ionization chamber array (SICA).

View Article and Find Full Text PDF

. To investigate the effects of respiratory motion on the delivered dose in the context of proton pencil beam scanning (PBS) transmission FLASH radiotherapy (FLASH-RT) by simulation and phantom measurements..

View Article and Find Full Text PDF

Background: The potential reduction of normal tissue toxicities during FLASH radiotherapy (FLASH-RT) has inspired many efforts to investigate its underlying mechanism and to translate it into the clinic. Such investigations require experimental platforms of FLASH-RT capabilities.

Purpose: To commission and characterize a 250 MeV proton research beamline with a saturated nozzle monitor ionization chamber for proton FLASH-RT small animal experiments.

View Article and Find Full Text PDF

Purpose: The transmission proton FLASH technique delivers high doses to the normal tissue distal to the target, which is less conformal compared to the Bragg peak technique. To investigate FLASH radiotherapy (RT) planning using single-energy Bragg peak beams with a similar beam arrangement as clinical intensity-modulated proton therapy (IMPT) in a liver stereotactic body radiation therapy (SBRT) and to characterize the plan quality, dose sparing of organs-at-risk (OARs), and FLASH dose rate percentage.

Materials And Methods: An in-house platform was developed to enable inverse IMPT-FLASH planning using single-energy Bragg peaks.

View Article and Find Full Text PDF

Purpose: Experimental measurements of two-dimensional (2D) dose rate distributions in proton pencil beam scanning (PBS) FLASH radiation therapy (RT) are currently lacking. In this study, we characterize a newly designed 2D strip-segmented ionization chamber array (SICA) with high spatial and temporal resolution and demonstrate its applications in a modern proton PBS delivery system at both conventional and ultrahigh dose rates.

Methods: A dedicated research beamline of the Varian ProBeam system was employed to deliver a 250-MeV proton PBS beam with nozzle currents up to 215 nA.

View Article and Find Full Text PDF

Purpose: We investigate two margin-based schemes for optimization target volumes (OTV), both isotropic expansion (2 mm) and beam-specific OTV, to account for uncertainties due to the setup errors and range uncertainties in pancreatic stereotactic pencil beam scanning (PBS) proton therapy. Also, as 2-mm being one of the extreme sizes of margin, we also study whether the plan quality of 2-mm uniform expansion could be comparable to other plan schemes.

Methods And Materials: We developed 2 schemes for OTV: (1) a uniform expansion of 2 mm (OTV) for setup uncertainty and (2) a water equivalent thickness-based, beam-specific expansion (OTV) on beam direction and 2 mm expansion laterally.

View Article and Find Full Text PDF

Purpose: To evaluate proton dose calculation accuracy of optimized pencil beam scanning (PBS) plans on MR-derived synthetic-CTs for prostate patients.

Material And Methods: Ten patient datasets with both a CT and an MRI were planned with opposed lateral proton beams optimized to single field uniform dose under an IRB-approved study. The proton plans were created on CT datasets generated by a commercial synthetic CT-based software called MRCAT (MR for Calculating ATtenuation) routinely used in our clinic for photon-based MR-only planning.

View Article and Find Full Text PDF

Objective: To quantify how a control software upgrade changed beam delivery times and impacted efficiency and capacity of a multiroom proton therapy center.

Methods: A four-room center treating approximately 90 patients/day, treating for approximately 7 years with optimized operations, underwent a software upgrade which reduced room and energy switching times from approximately 30 to 20 s and approximately 4 s to ~0.5 s, respectively.

View Article and Find Full Text PDF

Objective: The goal of the present study was to calculate the continuous slowing down approximation (CDSA) ranges and derive mass stopping power for EBT3 and EBT-XD films for therapeutic protons energy ranges of 50-400 MeV.

Methods: The MCNPX and TRansport of Ions in Matter (TRIM) Monte Carlo codes were used in this study. Utilizing the published International Commission on Radiation Units and Measurement 49 data for the water mass stopping power and CSDA ranges, the mass stopping powers of EBT3 and EBT-XD films were derived using the approximation proposed by Newhauser and Zhang in 2009.

View Article and Find Full Text PDF

Radiochromic film for spot-scanning QA provides high spatial resolution and efficiency gains from one-shot irradiation for multiple depths. However, calibration can be a tedious procedure which may limit widespread use. Moreover, since there may be an energy dependence, which manifests as a depth dependence, this may require additional measurements for each patient.

View Article and Find Full Text PDF

Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning.

Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.

View Article and Find Full Text PDF

Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans.

Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS.

View Article and Find Full Text PDF

Purpose: Anatomic changes and positional variability during intensity-modulated radiation therapy (IMRT) for head and neck cancer can lead to clinically significant dosimetric changes. We report our single-institution experience using an adaptive protocol and correlate these changes with anatomic and positional changes during treatment.

Methods And Materials: Twenty-three sequential head and neck IMRT patients underwent serial computed tomography (CT) scans during their radiation course.

View Article and Find Full Text PDF

Because of the dose limit for critical structures such as brainstem and spinal cord, administering a dose of 60 Gy to patients with recurrent head and neck cancer is challenging for those who received a previous dose of 60-70 Gy. Specifically, previously irradiated head and neck patients may have received doses close to the tolerance limit to their brainstem and spinal cord. In this study, a reproducible intensity-modulated radiation therapy (IMRT) treatment design is presented to spare the doses to brainstem and spinal cord, with no compromise of prescribed dose delivery.

View Article and Find Full Text PDF

Background: Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown.

Methodology/principal Findings: We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC.

View Article and Find Full Text PDF

Radiation therapy has evolved from 2-dimensional (2D) to 3-dimensional (3D) treatments and, more recently, to intensity-modulated radiation therapy and image-guided radiation therapy. Improvements in imaging have enabled improvements in targeting and treatment. As computer-processing power has improved during the past few decades, it has facilitated developments in both imaging and treatment.

View Article and Find Full Text PDF

The effects of size and charge on the condensation of a supersaturated water vapor on monodisperse nanoparticles of SiO(2) were investigated in a flow cloud chamber. The dependences of the critical supersaturation S(cr) on particle size at diameters of 10, 12, and 15 nm as well as on charge and charge polarity are determined experimentally. A novel electrospray aerosol generator was developed to generate a high concentration of SiO(2) nanoparticles of less than 10 nm by electrospraying silicon tetraethoxide (STE) ethanol solution followed by the thermal decomposition of STE.

View Article and Find Full Text PDF

The effects of size, charge, and solubility on the condensation of supersaturated n-butanol vapor on monodisperse nanoparticles of D-mannose and L-rhamnose are investigated in a flow cloud chamber. The dependence of the critical supersaturation S(cr) on particle size in the range from 30 to 90 nm is determined experimentally. The results show that the experimental S(cr) decreases with increasing particle size and solubility, qualitatively in agreement with the prediction by the Volmer theory of nucleation on soluble particles and by the Kohler theory, but quantitatively smaller than both theoretical predictions.

View Article and Find Full Text PDF

p, rho, T data of the supersaturated vapor of the Lennard-Jones fluid are obtained by molecular dynamics simulations. The metastable state points are identified before a phase separation takes place. An estimation of the location of the spinodal is given.

View Article and Find Full Text PDF