J Colloid Interface Sci
December 2025
Progress towards a hydrogen economy depends on green and efficient ways to produce hydrogen. A promising route is the catalytic hydrolysis of ammonia borane (AB). To address challenges in catalyst performance and cost for AB hydrolysis, we developed a structurally tuned heterogeneous non-precious metal catalyst based on cobalt (Co) and copper (Cu).
View Article and Find Full Text PDFPreventing short circuit hazard due to lithium (Li) dendrite formation across a separator from the anode of a lithium-ion battery (LIB) throughout operation is important; however, conventional separator materials cannot fulfil the increasing safety standards of next-generation LIBs. Thus, developing separator materials with high Li dendrite suppression ability in order to prevent short circuit is of paramount importance for realising next-generation LIBs. In this study, aluminum nitride-loaded polyethylene terephthalate (PET/AlN) composites with micro-/nanoarchitecture were synthesized using PET that was recycled from commercial waste bottles an electrospinning strategy.
View Article and Find Full Text PDFSurface reconstruction plays a pivotal role in enhancing the activity of the oxygen evolution reaction (OER), particularly in terms of the structural transformation from metal oxides to (oxy)hydroxides. Herein, a novel (oxy)hydroxide (FeCoNiCuMoOOH) with high entropy is developed by the electrochemical reconstitution of corresponding oxide (FeCoNiCuMoO). Significantly, the FeCoNiCuMoOOH exhibits much higher OER electrocatalytic activity and durability with an overpotential as low as 201 mV at a current density of 10 mA cm, and with a Tafel slope of 39.
View Article and Find Full Text PDFGiven the potential risk to the ecosystem, attention has increased in recent decades to the contamination of the aquatic environment by microplastics (MPs). Due to the limitations of conventional analysis methods of MPs, little is known about the size distribution and abundance of a full-size MPs from 1 μm to 5 mm. The present study quantified MPs with size ranges of 50 μm - 5 mm and 1-50 μm in the coastal marine waters from twelve locations in Hong Kong using fluorescence microscopy and flow cytometry respectively, during the end of wet (September 2021) and dry (March 2022) seasons.
View Article and Find Full Text PDFChemSusChem
February 2023
Upcycling of waste polyolefin plastics still meets with economic and technological challenges in practice. In this work, the catalytic hydrogenolysis-isomerization of nondegradable polyolefin plastic waste to high-value gasoline, diesel, and light lubricants with highly branched chain is achieved over a bifunctional Rh/Nb O catalyst under relatively mild conditions. Owing to the high efficiency of metallic Rh active sites, the dehydrogenation/hydrogenation of long carbon chains of polyolefins is enhanced.
View Article and Find Full Text PDFA method for facile synthesis of nanostructured catalysts supported on carbon nanotubes with atomically dispersed cobalt and nitrogen dopant is presented herein. The novel strategy is based on a facile one-pot pyrolysis treatment of cobalt (II) acetylacetonate and nitrogen-rich organic precursors under Ar atmosphere at 800 °C, resulting in the formation of Co- and N- co-doped carbon nanotube with earthworm-like morphology. The obtained catalyst was found to have a high density of defect sites, as confirmed by Raman spectroscopy.
View Article and Find Full Text PDFThis study evaluates the techno-economic feasibility of sophorolipid (SL) production process that co-utilizes food waste, glucose and oleic acid as substrates. Two variables are considered in terms of (a) Plant construction: Purchasing equipment either from the US or Mainland China and (b) Production: to produce SL crystals (about 97% active) or a concentrated SL liquid/syrup (about 78% active). Hence, four scenarios are generated: Scenario I: equipment made in the USA + SL crystals; Scenario II: equipment made in the USA + SL syrup; Scenario III: equipment made in China + SL crystals; Scenario IV: equipment made in China + SL syrup.
View Article and Find Full Text PDFBioresour Technol
February 2020
It is imminent to develop renewable resources to replace fossil-derived energies as fossil resources are on the brink of exhaustion. Lignin is one of the major components of lignocellulosic biomass, which is a natural amorphous three-dimensional polymer with abundant C-O bonds and aromatic structure. Hence, valorization of lignin into high value-added liquid fuels and chemicals is regarded as a promising strategy to mitigate fossil resource shortages.
View Article and Find Full Text PDFJ Vis Exp
August 2019
We herein present a method for the synthesis of HNbWO6, HNbMoO6, HTaWO6 solid acid nanosheet modified Pt/CNTs. By varying the weight of various solid acid nanosheets, a series of Pt/xHMNO6/CNTs with different solid acid compositions (x = 5, 20 wt%; M = Nb, Ta; N = Mo, W) have been prepared by carbon nanotube pretreatment, protonic exchange, solid acid exfoliation, aggregation and finally Pt particles impregnation. The Pt/xHMNO6/CNTs are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and NH3-temperature programmed desorption.
View Article and Find Full Text PDFBioresour Technol
November 2019
With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation.
View Article and Find Full Text PDFNanoscale Res Lett
January 2019
In this study, hydrothermal synthesis of sea urchin-like NiCoO was successfully demonstrated by a versatile charge-driven self-assembly strategy using positively charged poly(diallydimethylammonium chloride) (PDDA) molecules. Physical characterizations implied that sea urchin-like microspheres of ~ 2.5 μm in size were formed by self-assembly of numerous nanoneedles with a typical dimension of ~ 100 nm in diameter.
View Article and Find Full Text PDFOrganic solid wastes (OSWs) should be regarded as valuable resources rather than dead-end landfill waste that causes public health and odor concerns. Anaerobic digestion (AD) is an ideal approach for managing organic solid waste issues and involves using a group of anaerobic microorganisms to transform OSWs into useful products. In this review, over 100 publications related to AD of OSWs have been compiled, discussed, and analyzed.
View Article and Find Full Text PDFWe demonstrate a method for the synthesis of NixNb1-xO catalysts with sponge-like and fold-like nanostructures. By varying the Nb:Ni ratio, a series of NixNb1-xO nanoparticles with different atomic compositions (x = 0.03, 0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2018
Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of CeLaO (x = 0-0.
View Article and Find Full Text PDFJ Org Chem
February 2010
Protic aminophosphines with multiple chiral centers were synthesized in good yields and high purity by the nucleophilic ring-opening of N-protected cyclic sulfamidates with metal phosphides, followed by hydrolysis and deprotection. This synthetic approach is clean, scalable, and high yielding. The method provides an efficient alternative route for the synthesis of chiral aminophosphines.
View Article and Find Full Text PDFPhosphaalkenes (MesP=CRR': R = R' = Ph (1a); R = R' = 4-FC6H4 (1b); R = Ph, R' = 4-FC6H4 (1c); R = R' = 4-OMeC6H4 (1d); R = Ph, R' = 4-OMeC6H4 (1e); R = Ph, R' = 2-pyridyl (1f)) are prepared from the reaction of MesP(SiMe3)2 and O=CRR' in the presence of a trace of KOH or NaOH. The base-catalyzed phospha-Peterson reaction is quantitated by NMR spectroscopy, and isolated yields of phosphaalkene between 40 and 70% are obtained after vacuum distillation and/or recrystallization. The asymmetrically substituted phosphaalkenes (1c, 1e, 1f) form as 1:1 mixtures of E and Z isomers; however, X-ray crystallography reveals that the E isomers crystallize preferentially.
View Article and Find Full Text PDFThe secondary vinylphosphines Ar(F)P(H)C(R)[double bond]CH(2) [2a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 2b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 2c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)] were prepared by treating the corresponding dichlorophosphine Ar(F)PCl(2) (1) with H(2)C[double bond]C(R)MgBr. In the presence of catalytic base (DBU or DABCO) the vinylphosphines (2a-c) undergo quantitative 1,3-hydrogen migration over 3 d to give stable and isolable phosphaalkenes Ar(F)P=C(R)CH(3) (3a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 3b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 3c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)). Under analogous conditions, only 90% conversion is observed in the base-catalyzed rearrangement of MesP(H)C(CH(3))[double bond]CH(2) to MesP[double bond]C(CH(3))(2).
View Article and Find Full Text PDFJ Am Chem Soc
February 2003
Addition polymerization, the most general method of preparation for organic polymers, has successfully been extended to P=C bonds. The polymerization of a phosphaalkene has been initiated by thermolysis or with alkyllithium reagents. The unprecedented poly(methylenephosphine)s are easily oxidized using oxygen or sulfur to give air stable macromolecules.
View Article and Find Full Text PDFDirect chlorination of 1-CH(3)-CB(11)H(11)(-) in glacial acetic acid gave the highly chlorinated carborane anion 1-CH(3)-CB(11)Cl(11)(-), and treatment of 1-CH(3)-CB(11)H(11)(-) with ICl in triflic acid afforded the highly iodinated carborane anion 1-CH(3)-CB(11)I(11)(-). Under similar or more vigorous reaction conditions, however, the reaction of 1-CH(3)-CB(11)H(11)(-) with Br(2) in triflic acid did not proceed to completion. The highly brominated carborane anion 1-CH(3)-CB(11)Br(11)(-) was achieved via a sealed-tube reaction.
View Article and Find Full Text PDF