Progress towards a hydrogen economy depends on green and efficient ways to produce hydrogen. A promising route is the catalytic hydrolysis of ammonia borane (AB). To address challenges in catalyst performance and cost for AB hydrolysis, we developed a structurally tuned heterogeneous non-precious metal catalyst based on cobalt (Co) and copper (Cu).
View Article and Find Full Text PDFConventional ion-exchange polymeric membranes have limited selectivity due to their nonuniform and unstable structures. The rigid, regular, high porosity of metal organic framework (MOF) generally provides MOF membrane with exclusion/sieving effect but lack of electrostatic screening. Here we report for the first time a nonbiological highly selective MOF membrane with polyelectrolyte threaded in the nanochannel of metal organic framework (polyelectrolyte∼MOF) and its selective transport of alkali metal cations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon.
View Article and Find Full Text PDFA porous metal-organic framework composite with flexible anion-exchange polymers threaded within the host cavity demonstrates very fast and reversible ion-exchange activity. Polyvinyl benzyl trimethylammonium hydroxide (PVBTAH) caged in ZIF-8 is synthesized in steps of chloro-monomer impregnation, in situ polymerization, amination, and alkaline ion exchange. The synthesized non-cross-linked PVBTAH∼ZIF-8 material exhibits superior ion-exchange kinetics compared to conventional ion-exchange resins.
View Article and Find Full Text PDFChem Commun (Camb)
November 2013
Hydrogen released from ammonia borane in MIL-101(Cr) can be significantly improved by the attached amino and amide groups. The release with minimum impurities starts at 68 °C, reaching 1.6 equivalent of ammonia borane at 85 °C for the amino modified MOFs (NH2-MIL-101).
View Article and Find Full Text PDF