Publications by authors named "Chengchuan Che"

Background: Current studies show that exosomal miRNAs become an important factor in cancer metastasis. Among the many miRNA studies, miR-7-5p has not been thoroughly investigated in breast cancer metastasis.

Methods: Bioinformatic screening was performed using extant data from the GEO database, and miR-7-5p expression levels in breast cancer cell lines and exosomes were further examined using real-time quantitative PCR (qRT-PCR).

View Article and Find Full Text PDF

Morchella is a kind of important edible and medicinal fungi, which is rich in polysaccharides, enzymes, fatty acids, amino acids and other active components. Extracellular vesicles (EVs) have a typical membrane structure, and the vesicles contain some specific lipids, miRNAs and proteins, and their can deliver the contents to different cells to change their functions. The present study investigated whether Morchella produce extracellular vesicles and its anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW246.

View Article and Find Full Text PDF

The rhamnolipid production of has been impeded by its severe foaming; overcoming the bottleneck of foaming has become the most urgent requirement for rhamnolipid production in recent decades. In this study, we performed rhamnolipid fermentation under weakly acidic conditions to address this bottleneck. The results showed that the foaming behavior of rhamnolipid fermentation broths was pH-dependent with the foaming ability decreasing from 162.

View Article and Find Full Text PDF

Background: The TetR (tetracycline repressor) family is one of the major transcription factor families that regulate expression of genes involved in bacterial antimicrobial resistance systems. NCgl0886 protein, designated as AtsR, is a member of the TetR family identified in Corynebacterium glutamicum, which is conserved in several species of the genera Corynebacterium, also including the well-known pathogen C. diphtheriae.

View Article and Find Full Text PDF

Graphene oxide has covalently modified by chito oligosaccharides and-polyglutamic acid to form GO-CO--PGA, which exhibits excellent performance as a drug delivery carrier, but this carrier did not have the ability to actively target. In this study, the targeting property of breast cancer tumor cell exosomes was exploited to give GO-CO--PGA the ability to target breast tumor cells (MDA-MB-231), and the drug mitoxantrone (MIT) was loaded to finally form EXO-GO-CO--PGA-MIT with an encapsulation efficiency of 73.02%.

View Article and Find Full Text PDF

Background: CssR, the product of the Corynebacterium glutamicum ncgl1578 gene cotranscribed with ncgl1579, is a TetR (tetracycline regulator) family repressor. Although many TetR-type regulators in C. glutamicum have been extensively described, members of the TetR family involved in the stress response remain unidentified.

View Article and Find Full Text PDF

Rhamnolipids have recently attracted considerable attentions because of their excellent biosurfactant performance and potential applications in agriculture, environment, biomedicine, etc., but severe foaming causes the high cost of production, restraining their commercial production and applications. To reduce or eliminate the foaming, numerous explorations have been focused on foaming factors and fermentation strategies, but a systematic summary and discussion are still lacking.

View Article and Find Full Text PDF

A novel method for the preparation of antitumor drug vehicles has been optimized. Biological materials of chitosan oligosaccharide (CO) and γ-polyglutamic acid (γ-PGA) have previously been employed as modifiers to covalently modify graphene oxide (GO), which in turn loaded doxorubicin (DOX) to obtain a nano drug delivery systems of graphene oxide based composites (GO-CO-γ-PGA-DOX). The system was not equipped with the ability of initiative targeting, thus resulting into toxicity and side effects on normal tissues or organs.

View Article and Find Full Text PDF

Glutaredoxins (Grxs) with Cys-Pro-Phe (Tyr)-Cys motif and a thioredoxin fold structure play an important role in the anti-oxidant system of bacteria by catalyzing a variety of thiol-disulfide exchange reactions with a 2-Cys mechanism or a 1-Cys mechanism. However, the catalytic and physiological mechanism of Corynebacterium glutamicum Mycoredoxin 1 (Mrx1) that shares a high amino acid sequence similarity to Grxs has not been fully elucidated. Here, we report that Mrx1 has a protective function against various adverse conditions, and the decrease of cell viability to various stress conditions by deletion of the Mrx1 in C.

View Article and Find Full Text PDF

Glutaredoxins (Grxs) and thioredoxins (Trxs) play a critical role in resistance to oxidative conditions. However, physiological and biochemical roles of Mycoredoxin 3 (Mrx3) that shared a high amino acid sequence similarity to Grxs remain unknown in Corynebacterium glutamicum. Here we showed that mrx3 deletion strains of C.

View Article and Find Full Text PDF

Corynebacterium glutamicum, an important industrial and model microorganism, inevitably encountered stress environment during fermentative process. Therefore, the ability of C. glutamicum to withstand stress and maintain the cellular redox balance was vital for cell survival and enhancing fermentation efficiency.

View Article and Find Full Text PDF

N-heterocyclic carbenes-modified half-sandwich iridium(III) complex [(η-CMeCHCH)Ir(C^C)Cl]PF (C1) (where C^C is a N-heterocyclic carbene ligand) can effectively prevent the proliferation of human cervical cancer cells. Here, this study aims to investigate the in-deep anticancer effects of this complex on non-small cell lung cancer cells and explore the underlying molecular mechanism. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that iridium(III) complex had potent cytotoxicity studies towards non-small cell lung cancer cells (A549), human lung squamous cells (L78), human cervical cancer cells (Hela) and human bronchial epithelial cells (BEAS-2B).

View Article and Find Full Text PDF

Thioredoxins (Trxs) and protein-disulfide isomerases (PDIs) are believed to play a pivotal role in ensuring the proper folding of proteins, facilitating appropriate functioning of proteins, and maintaining intracellular redox homeostasis in bacteria. Two thioredoxins (Trxs) and three thiol-disulfide isomerases (PDIs) have been annotated in Corynebacterium glutamicum. However, nothing is known about their functional diversity in the redox regulation of proteins.

View Article and Find Full Text PDF

To be competitive with common synthetic surfactants, the cost of production of rhamnolipid must be minimized by the fermentation process of non-foaming and low impurities. Herein, a novel solid-state fermentation process was developed for production of rhamnolipid by Pseudomonas aeruginosa SKY. The results were shown that high-density polyurethane foam is a satisfactory alternative to agro-industrial by-products for SSF of rhamnolipid.

View Article and Find Full Text PDF

Background: Oxidative stress caused by inevitable hostile conditions during fermentative process was the most serious threat to the survival of the well-known industrial microorganism Corynebacterium glutamicum. To survive, C. glutamicum developed several antioxidant defenses including millimolar concentrations of mycothiol (MSH) and protective enzymes.

View Article and Find Full Text PDF

A purified polysaccharide was acquired from a newly collected wild Morchella. The strain identification initially showed that the strain was Morchella sextelata. This study aimed to investigate the structural features and immunomodulating activities of the polysaccharide.

View Article and Find Full Text PDF

In order to improve manganese-SOD stability, three mutations were constructed via site-directed mutagenesis, and the root mean square fluctuation (RMSF) and root mean square deviation (RMSD) were used as stability assessment indexes. The amino acids of V140, E155 and E215 from wild-type mouse Mn-SOD was replaced to L140, W155 and W215, and a recombinant plasmid containing DNA segment coding wild-type and mutant Mn-SOD protein was transformed into Escherichia coli BL21 for expression. The highest enzyme activity of the mutations-MnSOD was 2050 U/mg.

View Article and Find Full Text PDF

Background: Corynebacterium glutamicum is a well-known producer of various L-amino acids in industry. During the fermenting process, C. glutamicum unavoidably encounters oxidative stress due to a specific reactive oxygen species (ROS) produced by consistent adverse conditions.

View Article and Find Full Text PDF

The MarR family is unique to both bacteria and archaea. The members of this family, one of the most prevalent families of transcriptional regulators in bacteria, enable bacteria to adapt to changing environmental conditions, such as the presence of antibiotics, toxic chemicals, or reactive oxygen species (ROS), mainly by thiol-disulfide switches. Although the genome of encodes a large number of the putative MarR-type transcriptional regulators, their physiological and biochemical functions have so far been limited to only two proteins, regulator of oxidative stress response RosR and quinone oxidoreductase regulator QosR.

View Article and Find Full Text PDF

Alkyl hydroperoxidase reductase AhpD, which is functionally equivalent to the bacterial flavin-containing disulfide reductase AhpF, acts as a proton donor for the organic peroxide-scavenging alkyl hydroperoxidase AhpC. Although AhpD has long been demonstrated in Mycobacterium tuberculosis, its physiological and biochemical functions remain largely unknown in other actinobacteria, including Corynebacterium glutamicum, Streptomyces, and Mycobacterium smegmatis. Here, we report that C.

View Article and Find Full Text PDF

Peroxiredoxin Q (PrxQ) that belonged to the cysteine-based peroxidases has long been identified in numerous bacteria, but the information on the physiological and biochemical functions of PrxQ remain largely lacking in Corynebacterium glutamicum. To better systematically understand PrxQ, we reported that PrxQ from model and important industrial organism C. glutamicum, encoded by the gene ncgl2403 annotated as a putative PrxQ, played important roles in adverse stress resistance.

View Article and Find Full Text PDF

The traditional CaCO3-based fermentation process generates huge amount of insoluble CaSO4 waste. To solve this problem, we have developed an efficient and green D-lactic acid fermentation process by using ammonia as neutralizer. The 106.

View Article and Find Full Text PDF

The ketoreductase (KR) domain in the first extending module of the polyketide synthase (PKS) catalyzes the reductions of both an α-keto group and a β-keto group in the biosynthesis of bacillaene, suggesting the intrinsic substrate promiscuity. In order to further investigate the substrate specificity, the KR domain (BacKR1) was heterologously overexpressed in Escherichia coli. In vitro enzymatic analysis showed that only one of the four diastereomers was formed in the reduction of the racemic (±)-2-methyl-3-oxopentanoyl-N-acetylcysteamine thioester catalyzed by BacKR1.

View Article and Find Full Text PDF

In this study, efficient polymer-grade L-lactic acid production was achieved with the strain Bacillus sp. P38 by using cellulosic hydrolysate as the sole carbon source. In fed-batch fermentation, 180 g L(-1)L-lactic acid was obtained with a volumetric productivity of 2.

View Article and Find Full Text PDF