Publications by authors named "Bruno Herault"

Cocoa cultivation in West Africa has been a major driver of deforestation, leading to increased greenhouse gas emissions and threatening cocoa yields. Agroforestry, which integrates trees from various origins-remnant, spontaneous, and planted-presents a sustainable solution to enhance carbon sequestration and improve farm resilience. However, the specific contributions of these tree origins and the socio-environmental factors shaping their effectiveness remain poorly understood.

View Article and Find Full Text PDF

Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tree species diversity in local communities, which remains to be tested at the global scale. To address this gap, we analyzed global forest inventory data and revealed that the relationship between tree species richness and EcM tree proportion varied along environmental gradients.

View Article and Find Full Text PDF

Species' traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe.

View Article and Find Full Text PDF

Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate.

View Article and Find Full Text PDF

Tropical forest canopies are the biosphere's most concentrated atmospheric interface for carbon, water and energy. However, in most Earth System Models, the diverse and heterogeneous tropical forest biome is represented as a largely uniform ecosystem with either a singular or a small number of fixed canopy ecophysiological properties. This situation arises, in part, from a lack of understanding about how and why the functional properties of tropical forest canopies vary geographically.

View Article and Find Full Text PDF
Article Synopsis
  • Plant communities consist of species with varying functional traits and evolutionary backgrounds, leading to the expectation that functional diversity increases with phylogenetic diversity.* -
  • Contrary to this expectation, a study of over 1.7 million vegetation plots showed that functional and phylogenetic diversity are weakly and negatively correlated, suggesting they operate independently.* -
  • Phylogenetic diversity is more pronounced in forests and reflects recent climate, while functional diversity is influenced by both past and recent climate, highlighting the need to assess both types of diversity for ecosystem studies and conservation strategies.*
View Article and Find Full Text PDF
Article Synopsis
  • * Analysis of data from over 1 million forest plots and thousands of tree species shows that wood density varies significantly by latitude, being up to 30% denser in tropical forests compared to boreal forests, and is influenced mainly by temperature and soil moisture.
  • * The research also finds that disturbances like human activity and fire alter wood density at local levels, affecting forest carbon stock estimates by up to 21%, emphasizing the importance of understanding environmental impacts on forest ecosystems.
View Article and Find Full Text PDF

Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.

View Article and Find Full Text PDF
Article Synopsis
  • Secondary tropical forests are vital for carbon storage and biodiversity, making it necessary to understand their growth patterns for effective restoration and climate change strategies.
  • The study analyzed demographic information from over 500 tree species across different stages of forest succession in various climates to determine the range of demographic strategies (growth, mortality, recruitment rates) present.
  • Findings indicate that early successional forests already exhibit the full range of demographic strategies found in old-growth forests, suggesting that known diversity from old-growth studies can apply broadly, but additional research in secondary forests is still needed.
View Article and Find Full Text PDF

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e.

View Article and Find Full Text PDF

The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g.

View Article and Find Full Text PDF

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.

View Article and Find Full Text PDF

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.

View Article and Find Full Text PDF

Tree growth is key to species performance. However, individual growth variability within species remains underexplored for a whole community, and the role of species evolutionary legacy and local environments remains unquantified. Based on 36 years of diameter records for 7961 trees from 138 species, we assessed individual growth across an Amazonian forest.

View Article and Find Full Text PDF

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off.

View Article and Find Full Text PDF

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.

View Article and Find Full Text PDF

Water stress can cause declines in plant function that persist after rehydration. Recent work has defined 'resilience' traits characterizing leaf resistance to persistent damage from drought, but whether these traits predict resilience in whole-plant function is unknown. It is also unknown whether the coordination between resilience and 'resistance' - the ability to maintain function during drought - observed globally occurs within ecosystems.

View Article and Find Full Text PDF

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness.

View Article and Find Full Text PDF
Article Synopsis
  • The latitudinal diversity gradient (LDG) reflects a global trend showing that species richness typically increases towards the tropics, but understanding its causes has been challenging due to insufficient data.
  • A new high-resolution map of local tree species richness was created using extensive global forest inventory data and local biophysical factors, analyzing around 1.3 million sample plots.
  • Findings indicate that annual mean temperature is a significant predictor of tree species richness, aligning with the metabolic theory of biodiversity, but additional local factors also play a crucial role, especially in tropical regions.
View Article and Find Full Text PDF

Tropical trees store a large amount of nutrients in their woody tissues, thus triggering the question of what the functional association of these elements with other wood traits is. Given the osmotic activity of mineral elements such as potassium, sodium, and calcium, these elements should be strong candidates in mediating the water storing capacity in tropical trees. We investigated the role of wood nutrients in facilitating wood water storage in trees by using branch samples from 48 tropical tree species in South America and examined their associations with wood density (ρ).

View Article and Find Full Text PDF

Tropical forest dynamics are driven by growth and survival strategies of tree species in relation to treefall gaps; however, the ecological and evolutionary roles of intraspecific variation in the response to forest gaps remain unexplored. Here, we associated genomic data of three related tree species of the genus Symphonia in a French Guiana forest with (1) each individual tree's growth potential, and (2) with its light and competition environment estimated based on 33 years of forest monitoring in plots covering 120 ha. We show that individual trees within species have genetically determined growth strategies that are adapted to the local light and competition environments, which are shaped by the time since the last treefall.

View Article and Find Full Text PDF

One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels.

View Article and Find Full Text PDF

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values.

View Article and Find Full Text PDF

Questions: Long-term community response to disturbance can follow manifold successional pathways depending on the interplay between various recruitment processes. Analyzing the succession of recruited communities provides a long-term perspective on forest response to disturbance. Specifically, postdisturbance recruitment trajectories assess (a) the successive phases of postdisturbance response and the role of deterministic recruitment processes, and (b) the return to predisturbance state of recruits taxonomic/functional diversity/composition.

View Article and Find Full Text PDF