Publications by authors named "Marijn Bauters"

Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tree species diversity in local communities, which remains to be tested at the global scale. To address this gap, we analyzed global forest inventory data and revealed that the relationship between tree species richness and EcM tree proportion varied along environmental gradients.

View Article and Find Full Text PDF

Understanding leaf photosynthetic traits and their variation in tropical forests is crucial for improving model predictions of forest productivity, and accurately representing the high functional diversity in these forests remains a challenge. Moreover, leaf photosynthesis data are lacking for the tropical forest of the Congo basin. We observed photosynthetic, chemical and structural leaf traits of 24 woody species in a Congolese tropical forest and studied their variance across functional guilds, within-tree crown positions and overall canopy positions defined by their relative height within the canopy.

View Article and Find Full Text PDF

Trait-based analyses have shown great potential to advance our understanding of terrestrial ecosystem processes and functions. However, challenges remain in adequately synthesising a multidimensional and covarying trait space. Reducing the number of studied traits while identifying the most informative ones is increasingly recognized as a priority in functional ecology.

View Article and Find Full Text PDF

Background: Xylogenesis is synchronous among trees in regions with a distinct growing season, leading to a forest-wide time lag between growth and carbon uptake. In contrast, little is known about interspecific or even intraspecific variability of xylogenesis in tropical forests. Yet an understanding of xylogenesis patterns is key to successfully combine bottom-up (e.

View Article and Find Full Text PDF
Article Synopsis
  • Plant communities consist of species with varying functional traits and evolutionary backgrounds, leading to the expectation that functional diversity increases with phylogenetic diversity.* -
  • Contrary to this expectation, a study of over 1.7 million vegetation plots showed that functional and phylogenetic diversity are weakly and negatively correlated, suggesting they operate independently.* -
  • Phylogenetic diversity is more pronounced in forests and reflects recent climate, while functional diversity is influenced by both past and recent climate, highlighting the need to assess both types of diversity for ecosystem studies and conservation strategies.*
View Article and Find Full Text PDF

Lianas (woody climbers) are crucial components of tropical forests and they have been increasingly recognized to have profound effects on tropical forest carbon dynamics. Despite their importance, lianas' representation in vegetation models remains limited, partly due to the complexity of liana-tree dynamics and the diversity in liana life history strategies. This paper provides a comprehensive review of advances and challenges for mechanistically representing lianas in forest ecosystem models and a proposed path towards effectively representing lianas in these models.

View Article and Find Full Text PDF

Tree allometric models, essential for monitoring and predicting terrestrial carbon stocks, are traditionally built on global databases with forest inventory measurements of stem diameter (D) and tree height (H). However, these databases often combine H measurements obtained through various measurement methods, each with distinct error patterns, affecting the resulting H:D allometries. In recent decades, terrestrial laser scanning (TLS) has emerged as a widely accepted method for accurate, non-destructive tree structural measurements.

View Article and Find Full Text PDF

Tropical forest phenology directly affects regional carbon cycles, but the relation between species-specific and whole-canopy phenology remains largely uncharacterized. We present a unique analysis of historical tropical tree phenology collected in the central Congo Basin, before large-scale impacts of human-induced climate change. Ground-based long-term (1937-1956) phenological observations of 140 tropical tree species are recovered, species-specific phenological patterns analyzed and related to historical meteorological records, and scaled to characterize stand-level canopy dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes soil fungal diversity globally by examining over 4,000 topsoil samples from various ecosystems, revealing how different environmental factors influence fungal communities.
  • It demonstrates the effects of temperature and precipitation on local species richness (alpha diversity) and how these factors contribute to variations in fungal composition and evolutionary relationships (beta and phylogenetic diversity).
  • The research integrates fungal diversity into global biodiversity frameworks, providing maps and insights that can aid in conservation efforts and ecological studies worldwide.
View Article and Find Full Text PDF
Article Synopsis
  • Atmospheric transport and deposition of nutrients can potentially mitigate declines in soil fertility in Central African tropical forests due to biomass accumulation.
  • The study uses a biosphere model to assess how changes in nitrogen and phosphorus deposition impact plant nutrition and carbon sinks in a lowland forest site.
  • It finds that since the 1980s, increased nutrient deposition has significantly contributed to carbon sequestration, comparable to the effects of rising CO2 and climate change, with phosphorus deposition being more influential than nitrogen.
View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the lack of field data in tropical regions, which hinders understanding of net primary productivity (NPP) and carbon allocation and highlights the importance of local soil characteristics.
  • Researchers found that soil fertility, influenced by the parent material, is the primary factor driving NPP and carbon allocation in tropical montane forests, leading to distinct differences in biomass distribution.
  • Interestingly, topography had little effect on NPP variability, and soil organic carbon stocks did not correlate with carbon input, suggesting that plant carbon contributions often exceed the soil's capacity to store carbon effectively.
View Article and Find Full Text PDF

Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach.

View Article and Find Full Text PDF

We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.

View Article and Find Full Text PDF
Article Synopsis
  • The latitudinal diversity gradient (LDG) reflects a global trend showing that species richness typically increases towards the tropics, but understanding its causes has been challenging due to insufficient data.
  • A new high-resolution map of local tree species richness was created using extensive global forest inventory data and local biophysical factors, analyzing around 1.3 million sample plots.
  • Findings indicate that annual mean temperature is a significant predictor of tree species richness, aligning with the metabolic theory of biodiversity, but additional local factors also play a crucial role, especially in tropical regions.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that while phosphorus supply increases during forest succession, soil cation levels decrease, indicating a shift in nutrient dynamics.
  • * The decline of calcium in tree tissues throughout succession suggests it is becoming a limiting factor, highlighting the need to consider calcium alongside nitrogen and phosphorus in forest biogeochemical cycles, especially under changing land-use conditions.
View Article and Find Full Text PDF

Globally, tropical forests are assumed to be an important source of atmospheric nitrous oxide (NO) and sink for methane (CH). Yet, although the Congo Basin comprises the second largest tropical forest and is considered the most pristine large basin left on Earth, in situ NO and CH flux measurements are scarce. Here, we provide multi-year data derived from on-ground soil flux (n = 1558) and riverine dissolved gas concentration (n = 332) measurements spanning montane, swamp, and lowland forests.

View Article and Find Full Text PDF
Article Synopsis
  • Research discusses how current global climate models are based on air temperatures but fail to capture the soil temperatures beneath vegetation where many species thrive.
  • New global maps present soil temperature and bioclimatic variables at 1-km resolution for specific depths, revealing that mean annual soil temperatures can differ significantly from air temperatures by up to 10°C.
  • The findings indicate that relying on air temperature could misrepresent climate impacts on ecosystems, especially in colder regions, highlighting the need for more precise soil temperature data for ecological studies.
View Article and Find Full Text PDF

Consistent information on the current elemental composition of vegetation at global scale and the variables that determine it is lacking. To fill this gap, we gathered a total of 30 912 georeferenced records on woody plants foliar concentrations of nitrogen (N), phosphorus (P) and potassium (K) from published databases, and produced global maps of foliar N, P and K concentrations for woody plants using neural networks at a resolution of 1 km . We used data for climate, atmospheric deposition, soil and morphoclimatic groups to train the neural networks.

View Article and Find Full Text PDF

Central African tropical forests face increasing anthropogenic pressures, particularly in the form of deforestation and land-use conversion to agriculture. The long-term effects of this transformation of pristine forests to fallow-based agroecosystems and secondary forests on biogeochemical cycles that drive forest functioning are poorly understood. Here, we show that biomass burning on the African continent results in high phosphorus (P) deposition on an equatorial forest via fire-derived atmospheric emissions.

View Article and Find Full Text PDF
Article Synopsis
  • * A study analyzing 44 montane sites across 12 African countries reveals that the average aboveground live tree biomass carbon (AGC) stock is 149.4 megagrams of carbon per hectare, which is higher than similar forests in the Neotropics and above default values set by the Intergovernmental Panel on Climate Change.
  • * Despite this carbon richness, African montane forests face threats, having lost about 0.8 million hectares of old-growth forest since 2000, emphasizing the need for conservation efforts to protect
View Article and Find Full Text PDF

Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (NO) or elemental nitrogen (N). The release of NO is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of NO; however, despite being the world's second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce.

View Article and Find Full Text PDF

The semi-arid ecosystems of the African Sahel play an important role in the global carbon cycle and are among the most sensitive ecosystems to future environmental pressures. Still, basic data of photosynthetic characteristics of Sahelian vegetation are very limited, preventing us to properly understand these ecosystems and to project their response to future global changes. Here, we aim to study and quantify key leaf traits, including photosynthetic parameters and leaf nutrients (N and P), of common C and C Sahelian plants (trees, lianas, and grasses) at the Dahra field site (Senegal).

View Article and Find Full Text PDF

Forests exhibit leaf- and ecosystem-level responses to environmental changes. Specifically, rising carbon dioxide (CO ) levels over the past century are expected to have increased the intrinsic water-use efficiency (iWUE) of tropical trees while the ecosystem is gradually pushed into progressive nutrient limitation. Due to the long-term character of these changes, however, observational datasets to validate both paradigms are limited in space and time.

View Article and Find Full Text PDF

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked.

View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF