Increasing drought pressure under anthropogenic climate change may jeopardize the potential of tropical forests to capture carbon in woody biomass and act as a long-term carbon dioxide sink. To evaluate this risk, we assessed drought impacts in 483 tree-ring chronologies from across the tropics and found an overall modest stem growth decline (2.5% with a 95% confidence interval of 2.
View Article and Find Full Text PDFThe unrivaled millennia-long historical chronology of ancient Egypt forms the backbone for archaeological synchronization across the entire Eastern Mediterranean region c. 3000-1000 BCE. However, for more than a century, scholars have wrangled over the correct calendrical positioning of this record, with older scenarios being referred to as 'High', and younger ones, 'Low' chronologies.
View Article and Find Full Text PDFNat Commun
May 2025
Trees can differ enormously in their crown architectural traits, such as the scaling relationships between tree height, crown width and stem diameter. Yet despite the importance of crown architecture in shaping the structure and function of terrestrial ecosystems, we lack a complete picture of what drives this incredible diversity in crown shapes. Using data from 374,888 globally distributed trees, we explore how climate, disturbance, competition, functional traits, and evolutionary history constrain the height and crown width scaling relationships of 1914 tree species.
View Article and Find Full Text PDFBackground: Xylogenesis is synchronous among trees in regions with a distinct growing season, leading to a forest-wide time lag between growth and carbon uptake. In contrast, little is known about interspecific or even intraspecific variability of xylogenesis in tropical forests. Yet an understanding of xylogenesis patterns is key to successfully combine bottom-up (e.
View Article and Find Full Text PDFUnderstanding how the traits of lineages are related to diversification is key for elucidating the origin of variation in species richness. Here, we test whether traits are related to species richness among lineages of trees from all major biogeographical settings of the lowland wet tropics. We explore whether variation in mortality rate, breeding system and maximum diameter are related to species richness, either directly or via associations with range size, among 463 genera that contain wet tropical forest trees.
View Article and Find Full Text PDFPlant Methods
February 2025
Throughout their lifetime, trees store valuable environmental information within their wood. Unlocking this information requires quantitative analysis, in most cases of the surface of wood. The conventional pathway for high-resolution digitization of wood surfaces and segmentation of wood features requires several manual and time consuming steps.
View Article and Find Full Text PDFSelfing or mating between related individuals can lead to inbreeding depression (ID), which can influence the survival, growth and evolution of populations of tree species. As selective logging involves a decrease in the density of congeneric partners, it could lead to increasing biparental inbreeding or self-fertilization, exposing the population to higher ID. We assessed the influence of inbreeding on the growth of a commercial timber species, Pericopsis elata (Fabaceae), which produced about 54% of self-fertilized seedlings in a natural population of the Congo basin.
View Article and Find Full Text PDFBackground: Taxonomic identification of wood specimens provides vital information for a wide variety of academic (e.g. paleoecology, cultural heritage studies) and commercial (e.
View Article and Find Full Text PDFPlant Environ Interact
June 2024
In the tropics, more precisely in equatorial dense rainforest, xylogenesis is driven by a little distinct climatological seasonality, and many tropical trees do not show clear growth rings. This makes retrospective analyses and modeling of future tree performance difficult. This research investigates the presence, the distinctness, and the periodicity of growth ring for dominant tree species in two semi-deciduous rainforests, which contrast in terms of precipitation dynamics.
View Article and Find Full Text PDFPlant Environ Interact
April 2024
Tropical forest phenology directly affects regional carbon cycles, but the relation between species-specific and whole-canopy phenology remains largely uncharacterized. We present a unique analysis of historical tropical tree phenology collected in the central Congo Basin, before large-scale impacts of human-induced climate change. Ground-based long-term (1937-1956) phenological observations of 140 tropical tree species are recovered, species-specific phenological patterns analyzed and related to historical meteorological records, and scaled to characterize stand-level canopy dynamics.
View Article and Find Full Text PDFTrees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.
View Article and Find Full Text PDFBackground And Aims: Heartwood plays an important role in maintaining the structural integrity of trees. Although its formation has long been thought to be driven solely by internal ageing processes, more recent hypotheses suggest that heartwood formation acts as a regulator of the tree water balance by modulating the quantity of sapwood. Testing both hypotheses would shed light on the potential ecophysiological nature of heartwood formation, a very common process in trees.
View Article and Find Full Text PDFWood identification is a key step in the enforcement of laws and regulations aimed at combatting illegal timber trade. Robust wood identification tools, capable of distinguishing a large number of timbers, depend on a solid database of reference material. Reference material for wood identification is typically curated in botanical collections dedicated to wood consisting of samples of secondary xylem of lignified plants.
View Article and Find Full Text PDFIn the last decades, illegal logging has posed a serious threat for the integrity of forest ecosystems and for biodiversity conservation in tropical Africa. Although international treaties and regulatory plans have been implemented to reduce illegal logging, much of the total timber volume is harvested and traded illegally from tropical African forest regions. As a result, the development and the application of analytical tools to enhance the traceability and the identification of wood and related products is critical to enforce international regulations.
View Article and Find Full Text PDFNat Ecol Evol
October 2022
Glob Chang Biol
September 2022
Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured.
View Article and Find Full Text PDFBackground: The identification of tropical African wood species based on microscopic imagery is a challenging problem due to the heterogeneous nature of the composition of wood combined with the vast number of candidate species. Image classification methods that rely on machine learning can facilitate this identification, provided that sufficient training material is available. Despite the fact that the three main anatomical sections contain information that is relevant for species identification, current methods only rely on transverse sections.
View Article and Find Full Text PDFMost Central African rainforests are characterized by a remarkable abundance of light-demanding canopy species: long-lived pioneers (LLP) and non-pioneer light demanders (NPLD). A popular explanation is that these forests are still recovering from intense slash-and-burn farming activities, which abruptly ended in the 19th century. This "human disturbance" hypothesis has never been tested against spatial distribution patterns of these light demanders.
View Article and Find Full Text PDFAnalysis of wood transects in a manner that preserves the spatial distribution of the metabolites present is highly desirable to among other things: (1) facilitate ecophysiology studies that reveal the association between chemical make-up and environmental factors or climatic events over time; and (2) investigate the mechanisms of the synthesis and trafficking of small molecules within specialised tissues. While a variety of techniques could be applied to achieve these goals, most remain challenging and impractical. Laser ablation direct analysis in real time imaging-mass spectrometry (LADI-MS) was successfully used to survey the chemical profile of wood, while also preserving the small-molecule spatial distributions.
View Article and Find Full Text PDFUnderstanding tree growth and carbon sequestration are of crucial interest to forecast the feedback of forests to climate change. To have a global understanding of the wood formation, it is necessary to develop new methodologies for xylogenesis measurements, valid across diverse wood structures and applicable to both angiosperms and gymnosperms. In this study, the authors present a new workflow to study xylogenesis using high-resolution X-ray computed tomography (HRXCT), which is generic and offers high potential for automatization.
View Article and Find Full Text PDFTropical forests represent vast carbon stocks and continue to be key carbon sinks and buffer climate changes. The international policy constructed several mechanisms aiming at conservation and sustainable use of these forests. Illegal logging is an important threat of forests, especially in the tropics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2021
The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements.
View Article and Find Full Text PDF