Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biotic (e.g. dispersers) environment, which differentially affect species availability or performance. This, in turn, leads to shifts in the species composition of the plant community. However, there are many other PE feedback loops that potentially drive succession, each of which can be considered a model of succession. While plant-environment feedback loops in principle generate predictable successional trajectories, succession is generally observed to be highly variable. Factors contributing to this variability are the stochastic processes involved in feedback dynamics, such as individual mortality and seed dispersal, and extrinsic causes of succession, which are not affected by changes in the plant community but do affect species performance or availability. Both can lead to variation in the identity of dominant species within communities. This, in turn, leads to further contingencies if these species differ in their effect on their environment (priority effects). Predictability and variability are thus intrinsically linked features of ecological succession. We present a new conceptual framework of ecological succession that integrates the propositions discussed above. This framework defines seven general causes: landscape context, disturbance and land-use, biotic factors, abiotic factors, species availability, species performance, and the plant community. When involved in a feedback loop, these general causes drive succession and when not, they are extrinsic causes that create variability in successional trajectories and dynamics. The proposed framework provides a guide for linking these general causes into causal pathways that represent specific models of succession. Our framework represents a systematic approach to identifying the main feedback processes and causes of variation at different successional stages. It can be used for systematic comparisons among study sites and along environmental gradients, to conceptualise studies, and to guide the formulation of research questions and design of field studies. Mapping an extensive field study onto our conceptual framework revealed that the pathways representing the study's empirical outcomes and conceptual model had important differences, underlining the need to move beyond the conceptual models that currently dominate in specific fields and to find ways to examine the importance of and interactions among alternative causal pathways of succession. To further this aim, we argue for integrating long-term studies across environmental and anthropogenic gradients, combined with controlled experiments and dynamic modelling.

Download full-text PDF

Source
http://dx.doi.org/10.1111/brv.13051DOI Listing

Publication Analysis

Top Keywords

plant community
20
feedback loops
16
ecological succession
12
conceptual framework
12
succession
11
feedback
8
loops drive
8
models succession
8
plant-environment feedback
8
feedback dynamics
8

Similar Publications

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

Root-knot nematodes (RKNs), particularly , are one of the most destructive plant-parasitic nematodes (PPNs) affecting crop production worldwide. Previous earlier study revealed that calcinated oyster shell powder (OSP) possessed excellent suppression of tobacco RKN disease. However, the suppression mechanism of OSP against RKNs still remains unrevealed.

View Article and Find Full Text PDF

DNA fecal metabarcoding has revolutionized the field of herbivore diet analyses, offering deeper insight into plant-herbivore interactions and more reliable ecological inferences. However, due to PCR amplification bias, primer selection has a major impact on the validity of these inferences and insights. Using two pooling approaches on four mock communities and a case study examining diets of four large mammalian herbivores (LMH), we evaluated the efficacy of two primer pairs targeting the internal transcribed spacer 2 (ITS2) region: the widely used ITS-S2F/ITS4 pair and the UniPlant F/R pair, designed specifically for DNA metabarcoding.

View Article and Find Full Text PDF

Habitat and land-use intensity shape moth community structure across temperate forest and grassland.

J Anim Ecol

September 2025

Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences, Technische Universität München, Freising, Germany.

Land-use change and intensification are major drivers of biodiversity loss, yet their effects on diversity have usually been studied within a single habitat type or land-use category, limiting our understanding of cross-habitat patterns. Moths, a species-rich taxon worldwide, represent a significant portion of the biodiversity in both temperate forests and grasslands, functioning as pollinators and herbivores. While increasing land-use intensity (LUI) in both habitats is expected to negatively impact moth assemblages, the strength of this effect remains uncertain.

View Article and Find Full Text PDF