This review examines the role of ionic liquids (ILs) in the catalytic carbonation of epoxides for the synthesis of cyclic carbonates, focusing on the key factors that influence reaction efficiency. The nucleophilicity and basicity of the anions in IL catalysts are highlighted as critical components for promoting the cycloaddition reaction with CO. The solubility and ionicity of the ILs also significantly affect the reaction, with higher ionicity leading to better solubilization and catalytic performance.
View Article and Find Full Text PDFDespite the frequent use of alcohols as solvents in GBB (Groebke-Blackburn-Bienaymé) protocols, the mechanistic reasons for their preference remain poorly understood. In this work, we combined experimental and theoretical investigations to elucidate the roles of solvents and reagents in the GBB reaction, revealing their noninnocent behavior. Kinetic experiments, high-resolution ESI-(+)-MS-(/MS), and DFT calculations demonstrated that methanol not only acts as a solvent but also as a cocatalyst, significantly influencing the reaction mechanism and accelerating key steps.
View Article and Find Full Text PDFThis review comprehensively analyzes key parameters that govern the use of luminescent benzoselenadiazole (BSD) derivatives. We examine the main factors affecting their photophysical properties, including structural variations, heavy atom effects and environmental conditions, and discuss their potential applications in bioimaging technology. Whenever possible, the properties were compared to those of 2,1,3-benzoxadiazole and 2,1,3-benzothiadiazole analogues.
View Article and Find Full Text PDF2,1,3-Benzothiadiazole (BTD) derivatives show promise in advanced photophysical applications, but designing molecules with optimal desired properties remains challenging due to complex structure-property relationships. Existing computational methods have a high cost when predicting precise photophysical characteristics. Machine learning with Morgan fingerprints was employed to forecast BTD derivative maximum absorption and emission wavelengths.
View Article and Find Full Text PDFIn this work, we report the use of the CuAAC (copper-catalyzed azide-alkyne cycloaddition) reaction to obtain different triazole derivatives bridged to the naringenin skeleton, leading to the combination of a triazole pharmacophoric group with a bioactive flavanone. The generation of Cu(I) active species was done using CuSO salts and sodium ascorbate, resulting in moderate to high yields when the DMSO-water binary system was used as solvents. Mechanistic studies were done using density functional theory calculations and high-resolution mass spectrometry (HRMS).
View Article and Find Full Text PDFAn Acad Bras Cienc
November 2024
In this paper, we looked at the effect of mobility by students, post-doctorates and professors on science in Brazil. We analysed CAPES, CNPq, FAPESP and Incites data to examine the number of scholarships and their impact on posterior publishing. Decision trees, including the region of the country, length of stay by student and Professor, as well as institution abroad, were evaluated, along with logistic regressions.
View Article and Find Full Text PDFToxicol In Vitro
December 2024
The anticancer potential of some antimicrobial peptides has been reported. Hs02 is a recently characterized Intragenic Antimicrobial Peptide (IAP), which was able to exhibit potent antimicrobial and anti-inflammatory action. In this study, we evaluate for the first time the antineoplastic potential of the Hs02 IAP using cell lines representing the main types of leukemia as cancer models.
View Article and Find Full Text PDFAn Acad Bras Cienc
June 2024
Open access (OA) publishing provides free online access to research articles without subscription fees. In Brazil, absence of financial support from academic institutions and limited government policies pose challenges to OA publication. Here, we used data from the Web of Science and Scopus to compare with global trends in journal accessibility and scientific quality metrics.
View Article and Find Full Text PDFThis study critically reevaluates reported Biginelli-like reactions using a Kamlet-Abboud-Taft-based solvent effect model. Surprisingly, structural misassignments were discovered in certain multicomponent reactions, leading to the identification of pseudo three-component derivatives instead of the expected MCR adducts. Attempts to replicate literature conditions failed, prompting reconsideration of the described MCRs and proposed mechanisms.
View Article and Find Full Text PDFThis review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging.
View Article and Find Full Text PDFClimate change and the demand for clean energy have challenged scientists worldwide to produce/store more energy to reduce carbon emissions. This work proposes a conductive gel biopolymer electrolyte to support the sustainable development of high-power aqueous supercapacitors. The gel uses saline water and seaweed as sustainable resources.
View Article and Find Full Text PDFIn this work, we describe the design, synthesis, characterization, photophysical evaluation, DFT calculations, and application of two novel fluorescent benzothiadiazole (BTD) sensors for hydrazine detection and quantification at the cellular and multicellular () levels. The two probes were fully characterized, and their photophysical properties were evaluated. We tested the designed fluorogenic dye (named BTD-CHO) as a selective sensor for the rapid, sensitive, and selective detection of hydrazine.
View Article and Find Full Text PDFWe discuss herein the problems associated with using melting points to characterize multicomponent reactions' (MCRs) products and intermediates. Although surprising, it is not rare to find articles in which these MCRs final adducts (or their intermediates) are characterized solely by comparing melting points with those available from other reports. A brief survey among specialized articles highlights serious and obvious problems with this practice since, for instance, cases are found in which as many as 25 quite contrasting melting points have been attributed to the very same MCR adduct.
View Article and Find Full Text PDFA synthetic protocol for the preparation of α-acyl aminocarboxamides and α-amino amidines is proposed. The selectivity toward each of these two possible products was tuned by simple modifications of the reaction conditions. A broad scope is presented, allowing access to the desired products in up to 87% (Ugi adduct) and 93% (α-amino amidine).
View Article and Find Full Text PDFA transition metal-free protocol for the preparation of fluorescent and non-fluoresent 3-methylthio-4-arylmaleimides in a single step through a new rearrangement from thiazolidine-2,4-diones is described. By employing the optimized reaction conditions, a broad scope of derivatives was prepared in ≤97% yield. The reaction tolerated several substituted aryl groups, including the challenging preparation of pyridyl-containing derivatives.
View Article and Find Full Text PDFIn this review, we comprehensively describe catalyzed multicomponent reactions (MCRs) and the multiple roles of catalysis combined with key parameters to perform these transformations. Besides improving yields and shortening reaction times, catalysis is vital to achieving greener protocols and to furthering the MCR field of research. Considering that MCRs typically have two or more possible reaction pathways to explain the transformation, catalysis is essential for selecting a reaction route and avoiding byproduct formation.
View Article and Find Full Text PDFThe current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) constitutes a very aggressive type of breast cancer with few options of cytotoxic chemotherapy available for them. A chemotherapy regimen comprising of doxorubicin hydrochloride and cyclophosphamide, followed by paclitaxel, known as AC-T, is approved for usage as an adjuvant treatment for this type of breast cancer. In this study we aimed to elucidate the role of KIF11 in TNBC progression throughout its inhibition by two synthetic small molecules containing the DHPM core (dihydropyrimidin-2(1H)-ones or -thiones), with the hypothesis that these inhibitors could be an interesting option of antimitotic drug used alone or as adjuvant therapy in association with AC.
View Article and Find Full Text PDFWe review the most innovative efforts and greatest challenges faced when elucidating multicomponent reactions (MCRs) mechanisms. When compared to traditional reactions, the often two or more concurrent reactions pathways and the greater number of possible intermediates in MCRs turn their mechanistic investigation both a harder and trickier task. The common approaches used to investigate reaction mechanisms are often unable to clarify MCRs mechanisms; hence few but clever approaches are currently used to determine these mechanisms and to depict their key transformations.
View Article and Find Full Text PDFRSC Adv
February 2021
Bioactive carbon dots (C-dots) with 4 nm were successfully produced with singular photophysical properties, low-toxicity and interesting immunological response. The optical properties of the C-dots were investigated and the "light-up" behaviour enabled them to be explored in glucose detection and bioimaging experiments (mitochondrial selective probe). C-dots were not selective to the tumour region and several fluorescent spots were visualized spread on animal bodies.
View Article and Find Full Text PDFUnprecedented metal-free photocatalytic CO conversion to CO (up to 228±48 μmol g h) was displayed by TiO@IL hybrid photocatalysts prepared by simple impregnation of commercially available P25-titanium dioxide with imidazolium-based ionic liquids (ILs). The high activity of TiO@IL hybrid photocatalysts was mainly associated to (i) TiO@IL red shift compared to the pure TiO absorption, and thus a modification of the TiO surface electronic structure; (ii) TiO with IL bearing imidazolate anions lowered the CO activation energy barrier. The reaction mechanism was postulated to occur via CO photoreduction to formate species by the imidazole/imidazole radical redox pair, yielding CO and water.
View Article and Find Full Text PDFOrg Biomol Chem
February 2021
In this work, we describe the application of a synthetic enzyme (synzyme) as the catalyst to promote the multicomponent synthesis of isoxazol-5(4H)-one derivatives. The catalytic system could be used up to 15 times without any notable loss of its activity. Some derivatives showed fluorescence and their photophysical data were evaluated.
View Article and Find Full Text PDFJ Org Chem
October 2020
An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it.
View Article and Find Full Text PDFIn this work, we described the synthesis of 10 new fluorescent 2,1,3-benzoselenadiazole small-molecule derivatives and their chemical- and photocharacterizations. The new derivatives could, for the first time, be successfully applied as selective live cell imaging probes (at nanomolar concentrations) and stained lipid-based structures preferentially. Density functional theory (DFT) calculations were used to help in understanding the photophysical data and the intramolecular charge-transfer (ICT) processes of the synthesized dyes.
View Article and Find Full Text PDF