Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study critically reevaluates reported Biginelli-like reactions using a Kamlet-Abboud-Taft-based solvent effect model. Surprisingly, structural misassignments were discovered in certain multicomponent reactions, leading to the identification of pseudo three-component derivatives instead of the expected MCR adducts. Attempts to replicate literature conditions failed, prompting reconsideration of the described MCRs and proposed mechanisms. Electrospray ionization (tandem) mass spectrometry, NMR, melting points, elemental analyses and single-crystal X-ray analysis exposed inaccuracies in reported MCRs and allowed for the proposition of a complete catalytic cycle. Biological investigations using both pure and "contaminated" derivatives revealed distinctive features in assessed bioassays. A new cellular action mechanism was unveiled for a one obtained pseudo three-component adduct, suggesting similarity with the known dihydropyrimidinone Monastrol as Eg5 inhibitors, disrupting mitosis by forming monoastral mitotic spindles. Docking studies and RMSD analyses supported this hypothesis. The findings described herein underscore the necessity for a critical reexamination and potential corrections of structural assignments in several reports. This work emphasizes the significance of rigorous characterization and critical evaluation in synthetic chemistry, urging a careful reassessment of reported synthesis and biological activities associated with these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4ob00272eDOI Listing

Publication Analysis

Top Keywords

biginelli-like reactions
8
pseudo three-component
8
revisiting biginelli-like
4
reactions solvent
4
solvent effects
4
effects mechanisms
4
mechanisms biological
4
biological applications
4
applications correction
4
correction literature
4

Similar Publications

This study critically reevaluates reported Biginelli-like reactions using a Kamlet-Abboud-Taft-based solvent effect model. Surprisingly, structural misassignments were discovered in certain multicomponent reactions, leading to the identification of pseudo three-component derivatives instead of the expected MCR adducts. Attempts to replicate literature conditions failed, prompting reconsideration of the described MCRs and proposed mechanisms.

View Article and Find Full Text PDF

Among the eight different triazolopyrimidine isomers existing in nature, 1,2,4-triazolo[1,5-]pyrimidine (TZP) is one of the most studied and used isomers in medicinal chemistry. For some years, our group has been involved in developing regioselective one-pot procedures for the synthesis of 2-amino-7-aryl-5-methyl- and 2-amino-5-aryl-7-methyl-TZPs of interest in the preparation of antiviral agents. In this work, taking advantage of a Biginelli-like multicomponent reaction (MCR), we report the identification of finely tunable conditions to regioselectively synthesize C-6 ester-substituted amino-TZP analogues, both in dihydro and oxidized forms.

View Article and Find Full Text PDF

Construction of Isocytosine Scaffolds via DNA-Compatible Biginelli-like Reaction.

Org Lett

July 2023

PharmaBlock Sciences (Nanjing), Inc., Nanjing 210032, Jiangsu Province, China.

Herein we report a DNA-compatible Biginelli reaction to construct isocytosine scaffolds. This reaction utilizes a one-pot reaction of DNA-conjugated guanidines with aldehydes and methyl cyanoacetates to give isocytosine derivatives, and the method is well compatible with different types of substrates. This is the first report on the synthesis of an isocytosine backbone in the field of DNA-compatible organic synthesis.

View Article and Find Full Text PDF

The interest in 3,4-dihydropyrimidine-2(1)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised.

View Article and Find Full Text PDF

Tetrahydropyrimidines are a class of azaheterocycles, also called Biginelli hybrids (obtained from the Biginelli reaction), that have attracted an enormous interest in the medicinal chemistry community in recent years, due to a broad biological activity, such as anticancer, antiviral, anti-inflammatory, antidiabetic, antituberculosis activities, According to SciFinder®, more than 70 000 different Biginelli-like compounds have been covered in publications. However, although the Biginelli reaction can yield a large number of compounds with a broad range of activities, none of them have been captured in a carrier. In this study, chitosan-based (Ch) nanoparticles (NPs) containing three different molecules (Biginelli hybrids) were developed and tested for the first time as simple and promising vehicles for anticancer Biginelli-based drugs.

View Article and Find Full Text PDF