Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

2,1,3-Benzothiadiazole (BTD) derivatives show promise in advanced photophysical applications, but designing molecules with optimal desired properties remains challenging due to complex structure-property relationships. Existing computational methods have a high cost when predicting precise photophysical characteristics. Machine learning with Morgan fingerprints was employed to forecast BTD derivative maximum absorption and emission wavelengths. Three flavors of machine learning models were applied, namely, Random Forest, LigthGBM, and XGBoost. Random forest achieved values of 0.92 for absorption and 0.89 for emission, validated internally with 10-fold cross-validations and externally with recent experimental data. SHapley Additive exPlanations (SHAP) analysis revealed critical design insights, highlighting the tertiary amine presence and solvent polarity as key drivers of red-shifted emissions. By the development of a web-based predictive tool, the potential of machine learning to accelerate molecular design is demonstrated, providing researchers a powerful approach to engineer BTD derivatives with enhanced photophysical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344762PMC
http://dx.doi.org/10.1021/acs.jcim.4c02414DOI Listing

Publication Analysis

Top Keywords

machine learning
16
shap analysis
8
photophysical properties
8
btd derivatives
8
random forest
8
integrating machine
4
learning
4
learning shap
4
analysis advance
4
advance rational
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF