Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we report the use of the CuAAC (copper-catalyzed azide-alkyne cycloaddition) reaction to obtain different triazole derivatives bridged to the naringenin skeleton, leading to the combination of a triazole pharmacophoric group with a bioactive flavanone. The generation of Cu(I) active species was done using CuSO salts and sodium ascorbate, resulting in moderate to high yields when the DMSO-water binary system was used as solvents. Mechanistic studies were done using density functional theory calculations and high-resolution mass spectrometry (HRMS). We investigated the reduction process of Cu(II) to Cu(I), and the role of mononuclear and dinuclear copper species in the catalysis of the cycloaddition reaction. Our combined theoretical and experimental results indicate that the mechanism involving a single copper species is taking place, with the cycloaddition step being the rate-determining step. The calculations indicate that the mechanism involving two copper species has the deprotonation of the coordinated terminal alkyne as the rate-determining step.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202500121DOI Listing

Publication Analysis

Top Keywords

copper species
12
cycloaddition reaction
8
indicate mechanism
8
mechanism involving
8
rate-determining step
8
flavanone-enabled cuaac
4
cuaac reaction
4
reaction noninnocent
4
noninnocent reagents
4
reagents driving
4

Similar Publications

Motivated by copper's essential role in biology and its wide range of applications in catalytic and synthetic chemistry, this work aims to understand the effect of heteroatom substitution on the overall stability and reactivity of biomimetic Cu(II)-alkylperoxo complexes. In particular, we designed a series of tetracoordinated ligand frameworks based on iso-BPMEN = (,-bis(2-pyridylmethyl)-','-dimethylethane-1,2-diamine) with varying the primary coordination sphere using different donor atoms (N, O, or S) bound to Cu(II). The copper(II) complexes bearing iso-BPMEN and their modified heteroatom-substituted ligands were synthesized and structurally characterized.

View Article and Find Full Text PDF

Thermal CO Adsorption and Activation on Copper Oxide Cluster Anions CuO ( = 3-9).

J Phys Chem A

September 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.

Understanding the active sites of copper (Cu)-based catalysts toward CO is a prerequisite for improving their rational design. The reactivity of copper oxide cluster anions CuO ( = 3-9) and bare copper cluster anions Cu toward CO has been investigated at room temperature by employing mass spectrometry combined with density functional theory (DFT) calculations. Only adsorption products are observed for the reaction of CuO with CO.

View Article and Find Full Text PDF

The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).

View Article and Find Full Text PDF

Biofilm lifestyle across different lineages of ammonia-oxidizing archaea.

ISME J

September 2025

Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.

View Article and Find Full Text PDF

Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.

View Article and Find Full Text PDF