Publications by authors named "Balraj Doray"

The cellular etiology of seizures in CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), remains elusive. Given that Cln2R207X/R207X mice display fatal spontaneous seizures and an early loss of several cortical GABAergic interneuron populations, we hypothesized that these two events might be causally related. To study the cell-autonomous effects of interneuron-specific TPP1 deficiency, we first generated a transgenic mouse expressing loxP-flanked lysosomal membrane-tethered TPP1 (TPP1LAMP1) on the Cln2R207X/R207X genetic background, and then crossed TPP1LAMP1 mice with Vgat-Cre mice.

View Article and Find Full Text PDF

GlcNAc-1-phosphotransferase (GNPT) is the key enzyme for tagging lysosomal hydrolases with the mannose 6-phosphate moiety for delivery to the lysosome. Here, we present the assay for measuring endogenous GNPT activity in SK-MEL-30 cells. We provide details for preparing the [H]UDP-GlcNAc donor substrate and conditions for the enzymatic transfer of [H]GlcNAc-1-P to the methyl α-D-mannopyranoside acceptor (α-MM).

View Article and Find Full Text PDF

In vertebrates, newly synthesized lysosomal enzymes traffick to lysosomes through the mannose-6-phosphate (M6P) pathway. The Golgi membrane protein TMEM251 was recently discovered to regulate lysosome biogenesis by controlling the level of GlcNAc-1-phosphotransferase (GNPT). However, its precise function remained unclear.

View Article and Find Full Text PDF

Mutations that cause loss of function of GlcNAc-1-phosphotransferase (PTase) lead to the lysosomal storage disorder mucolipidosis II. PTase is the key enzyme of the mannose 6-phosphate (M6P) targeting system that is responsible for tagging lysosomal hydrolases with the M6P moiety for their delivery to the lysosome. We had previously generated a truncated hyperactive form of PTase termed S1S3 which was shown to notably increase the phosphorylation level of secreted lysosomal enzymes and enhance their uptake by cells.

View Article and Find Full Text PDF

GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related.

View Article and Find Full Text PDF

The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation.

View Article and Find Full Text PDF

While chimeric antigen receptor (CAR) T cells targeting CD19 can cure a subset of patients with B cell malignancies, most patients treated will not achieve durable remission. Identification of the mechanisms leading to failure is essential to broadening the efficacy of this promising platform. Several studies have demonstrated that disruption of CD19 genes and transcripts can lead to disease relapse after initial response; however, few other tumor-intrinsic drivers of CAR T cell failure have been reported.

View Article and Find Full Text PDF

Vertebrates use the mannose 6-phosphate (M6P)-recognition system to deliver lysosomal hydrolases to lysosomes. Key to this pathway is N-acetylglucosamine (GlcNAc)-1-phosphotransferase (PTase) that selectively adds GlcNAc-phosphate (P) to mannose residues of hydrolases. Human PTase is an αβγ heterohexamer with a catalytic core and several peripheral domains that recognize and bind substrates.

View Article and Find Full Text PDF

The SARS-CoV-2 spike glycoprotein (spike) mediates viral entry by binding ACE2 receptors on host cell surfaces. Spike glycan processing and cleavage, which occur in the Golgi network, are important for fusion at the plasma membrane, promoting both virion infectivity and cell-to-cell viral spreading. We show that a KxHxx motif in the cytosolic tail of spike weakly binds the COPβ' subunit of COPI coatomer, which facilitates some recycling of spike within the Golgi, while releasing the remainder to the cell surface.

View Article and Find Full Text PDF

Disruption of the mannose 6-phosphate (M-6-P) pathway in HeLa cells by inactivation of the GNPTAB gene, which encodes the α/β subunits of GlcNAc-1-phosphotransferase, results in missorting of newly synthesized lysosomal acid hydrolases to the cell culture media instead of transport to the endolysosomal system. We previously demonstrated that the majority of the lysosomal aspartyl protease, cathepsin D, is secreted in these GNPTAB HeLa cells. However, the intracellular content of cathepsin D in these cells was still greater than that of WT HeLa cells which retained most of the protease, indicating a marked elevation of cathepsin D expression in response to abrogation of the M-6-P pathway.

View Article and Find Full Text PDF

The Golgi-localized, gamma-ear containing, ADP-ribosylation factor-binding proteins (GGAs 1, 2, and 3) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) at the Golgi and play a role, along with adaptor protein complex 1 (AP-1), in the sorting of newly synthesized lysosomal hydrolases to the endolysosomal system. However, the relative importance of the two types of coat proteins in this process is still unclear. Here, we report that inactivation of all three GGA genes in HeLa cells decreased the sorting efficiency of cathepsin D from 97% to 73% relative to wild-type, with marked redistribution of the cation-independent MPR from peripheral punctae to the trans-Golgi network.

View Article and Find Full Text PDF

Transport of newly synthesized lysosomal enzymes to the lysosome requires tagging of these enzymes with the mannose 6-phosphate moiety by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), encoded by two genes, GNPTAB and GNPTG. GNPTAB encodes the α and β subunits, which are initially synthesized as a single precursor that is cleaved by Site-1 protease in the Golgi. Mutations in this gene cause the lysosomal storage disorders mucolipidosis II (MLII) and mucolipidosis III αβ (MLIII αβ).

View Article and Find Full Text PDF

The glycosyltransferases of the mammalian Golgi complex must recycle between the stacked cisternae of that organelle to maintain their proper steady-state localization. This trafficking is mediated by COPI-coated vesicles, but how the glycosyltransferases are incorporated into these transport vesicles is poorly understood. Here we show that the N-terminal cytoplasmic tails (N-tails) of a number of Golgi glycosyltransferases which share a ϕ-(K/R)-X-L-X-(K/R) sequence bind directly to the δ- and ζ-subunits of COPI.

View Article and Find Full Text PDF

Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme.

View Article and Find Full Text PDF

The UDP-GlcNAc:lysosomal enzyme, N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-PT), is an α β γ hexamer that mediates the initial step in the formation of the mannose 6-phosphate targeting signal on newly synthesized lysosomal acid hydrolases. The GNPTAB gene encodes the 1256 amino acid long α/β precursor which is normally cleaved at K928 in the early Golgi by Site-1 protease (S1P). Here, we show that removal of the so-called 'spacer-1' domain (residues 86-322) results in cleavage almost exclusively at a second S1P consensus sequence located upstream of K928.

View Article and Find Full Text PDF

The Golgi enzyme UDP-GlcNAc:lysosomal enzymeN-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase), an α2β2γ2hexamer, mediates the initial step in the addition of the mannose 6-phosphate targeting signal on newly synthesized lysosomal enzymes. This tag serves to direct the lysosomal enzymes to lysosomes. A key property of GlcNAc-1-phosphotransferase is its unique ability to distinguish the 60 or so lysosomal enzymes from the numerous non-lysosomal glycoproteins with identical Asn-linked glycans.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed.

View Article and Find Full Text PDF

The functional redundancy of the three mammalian Golgi-localized, γ-ear-containing, ADP-ribosylation factor-binding proteins (GGAs) was addressed in a previous study. Using insertional mutagenesis, we found that Gga1 or Gga3 homozygous knockout mice were for the most part normal, whereas mice homozygous for two different Gga2 gene-trap alleles exhibited either embryonic or neonatal lethality in the C57BL/6 background, depending on the source of the vector utilized (Byg vs. Tigm, respectively).

View Article and Find Full Text PDF

The GGA family of clathrin adaptor proteins mediates the intracellular trafficking of transmembrane proteins by interacting with DXXLL-type sorting signals on the latter. These signals were originally identified at the carboxy-termini of the transmembrane cargo proteins. Subsequent studies, however, showed that internal DXXLL sorting motifs occur within the N- or C-terminal cytoplasmic domains of cargo molecules.

View Article and Find Full Text PDF

Numerous studies using cultured mammalian cells have shown that the three GGAs (Golgi-localized, gamma-ear containing, ADP-ribosylation factor- binding proteins) function in the transport of cargo proteins between the trans- Golgi network and endosomes. However, the in vivo role(s) of these adaptor proteins and their possible functional redundancy has not been analyzed. In this study, the genes encoding GGAs1-3 were disrupted in mice by insertional mutagenesis.

View Article and Find Full Text PDF

The AP-2 clathrin adaptor differs fundamentally from the related AP-1, AP-3, and AP-4 sorting complexes because membrane deposition does not depend directly on an Arf family GTPase. Instead phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) appears to act as the principal compartmental cue for AP-2 placement at the plasma membrane as well as for the docking of numerous other important clathrin coat components at the nascent bud site. This PtdIns(4,5)P(2) dependence makes type I phosphatidylinositol 4-phosphate 5-kinases (PIPKIs) lynchpin enzymes in the assembly of clathrin-coated structures at the cell surface.

View Article and Find Full Text PDF

The Golgi-localized, gamma-ear-containing, ADP ribosylation factor-binding family of monomeric clathrin adaptors (GGAs) is known to bind cargo molecules through short C-terminal peptide motifs conforming to the sequence DXXLL (X = any amino acid), while the heterotetrameric adaptors AP-1 and AP-2 utilize a similar but discrete sorting motif of the sequence [D,E]XXXL[L,I]. While it has been established that a single cargo molecule may contain either or both types of these acidic cluster-dileucine (AC-LL) sorting signals, there are no examples of cargo with overlapping GGA and AP-1/AP-2-binding motifs. In this study, we report that the cytosolic tail of low-density lipoprotein receptor-related protein (LRP)9 contains a bifunctional GGA and AP-1/AP-2-binding motif at its carboxy-terminus (EDEPLL).

View Article and Find Full Text PDF

The adaptor protein AP-1 is the major coat protein involved in the formation of clathrin-coated vesicles at the trans-Golgi network. The prevailing view is that AP-1 recruitment involves coincident binding to multiple low-affinity sites comprising adenosine diphosphate ribosylation factor 1 (Arf-1)-guanosine triphosphate (GTP), cargo sorting signals, and phosphoinositides. We now show that binding of cargo signal peptides to AP-1 induces a conformational change in its core domain that greatly enhances its interaction with Arf-1-GTP.

View Article and Find Full Text PDF

The clathrin adaptors AP-1 and AP-2 bind cargo proteins via two types of motifs: tyrosine-based Yxx phi and dileucine-based [DE]XXXL[LI]. Although it is well established that Yxx phi motifs bind to the mu subunits of AP-1 or AP-2, dileucine motifs have been reported to bind to either the mu or beta subunits of these adaptors as well as the gamma/sigma1 hemicomplex of AP-1. To clarify this controversy, the various subunits of AP-1 and AP-2 were expressed individually and in hemicomplex form in insect cells, and they were used in glutathione S-transferase pull-down assays to determine their binding properties.

View Article and Find Full Text PDF